IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p2097-2102.html
   My bibliography  Save this article

Parameter identification of time-delay chaotic system using chaotic ant swarm

Author

Listed:
  • Tang, Yinggan
  • Cui, Mingyong
  • Li, Lixiang
  • Peng, Haipeng
  • Guan, Xinping

Abstract

The identification problem of delay time as well as parameters of time-delay chaotic system is investigated in this paper. The identification problem is converted to that of parameter optimization by constructing suitable fitness function. A novel optimization method, called CAS (chaotic ant swarm), which simulates the chaotic behavior of single ant and the self-organization behavior of ant colony, is used to solve this optimization problem. Illustrative example demonstrates the effectiveness of the proposed method.

Suggested Citation

  • Tang, Yinggan & Cui, Mingyong & Li, Lixiang & Peng, Haipeng & Guan, Xinping, 2009. "Parameter identification of time-delay chaotic system using chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2097-2102.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2097-2102
    DOI: 10.1016/j.chaos.2008.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    2. Rakshit, Biswambhar & Chowdhury, A. Roy & Saha, Papri, 2007. "Parameter estimation of a delay dynamical system using synchronization in presence of noise," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1278-1284.
    3. Li, Lixiang & Yang, Yixian & Peng, Haipeng & Wang, Xiangdong, 2006. "Parameters identification of chaotic systems via chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1204-1211.
    4. Li, Demin & Wang, Zidong & Zhou, Jie & Fang, Jian’an & Ni, Jinjin, 2008. "A note on chaotic synchronization of time-delay secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1217-1224.
    5. Lu, Jianquan & Cao, Jinde, 2007. "Synchronization-based approach for parameters identification in delayed chaotic neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 672-682.
    6. Lin, Jui-Sheng & Liao, Teh-Lu & Yan, Jun-Juh & Yau, Her-Terng, 2005. "Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: Adaptive robust observer-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 971-978.
    7. Chang, Wei-Der, 2007. "Parameter identification of Chen and Lü systems: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1469-1476.
    8. Yu, Yongguang, 2007. "The synchronization for time-delay of linearly bidirectional coupled chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1197-1203.
    9. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong, 2005. "A unified approach for impulsive lag synchronization of chaotic systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1177-1184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    2. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    3. Tarai (Poria), Anindita & Poria, Swarup & Chatterjee, Prasanta, 2009. "Synchronization of bidirectionally coupled chaotic Chen’s system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 190-197.
    4. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    5. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    6. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.
    7. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    8. Li, Nianqiang & Pan, Wei & Yan, Lianshan & Luo, Bin & Xu, Mingfeng & Jiang, Ning & Tang, Yilong, 2011. "On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 198-207.
    9. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    10. Márquez-Martínez, L.A. & Cuesta-García, J.R. & Pena Ramirez, J., 2022. "Boosting synchronization in chaotic systems: Combining past and present interactions," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    12. Li, Yuying & Wen, Qiaoyan & Li, Lixiang & Peng, Haipeng, 2009. "Hybrid chaotic ant swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 880-889.
    13. Lü, Ling & Wei, Qingtao & Jia, Hao & Tian, Shuo & Xu, Zhao & Zhao, Lina & Xu, Zhichao & Xu, Xianying, 2019. "Parameter identification and synchronization between uncertain delay networks based on the coupling technology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    14. Yassen, M.T., 2008. "Synchronization hyperchaos of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 465-475.
    15. Song, Xinlin & Wang, Chunni & Ma, Jun & Ren, Guodong, 2016. "Collapse of ordered spatial pattern in neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 95-112.
    16. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    17. Martín Alejandro Valencia-Ponce & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga, 2021. "Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    18. Li, Lixiang & Peng, Haipeng & Yang, Yixian & Wang, Xiangdong, 2009. "On the chaotic synchronization of Lorenz systems with time-varying lags," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 783-794.
    19. Lü, Ling & Li, Chengren & Li, Gang & Bai, Suyuan & Gao, Yan & Yan, Zhe & Rong, Tingting, 2018. "Adaptive synchronization of uncertain time-delayed and multi-link network with arbitrary topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 355-365.
    20. Zheng, Yongai & Chen, Guanrong, 2009. "Fuzzy impulsive control of chaotic systems based on TS fuzzy model," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 2002-2011.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2097-2102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.