IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i5p2317-2328.html
   My bibliography  Save this article

On the stability of linear systems with fractional-order elements

Author

Listed:
  • Radwan, A.G.
  • Soliman, A.M.
  • Elwakil, A.S.
  • Sedeek, A.

Abstract

Linear integer-order circuits are a narrow subset of rational-order circuits which are in turn a subset of fractional-order. Here, we study the stability of circuits having one fractional element, two fractional elements of the same order or two fractional elements of different order. A general procedure for studying the stability of a system with many fractional elements is also given. It is worth noting that a fractional element is one whose impedance in the complex frequency s-domain is proportional to sα and α is a positive or negative fractional-order. Different transformations and methods will be illustrated via examples.

Suggested Citation

  • Radwan, A.G. & Soliman, A.M. & Elwakil, A.S. & Sedeek, A., 2009. "On the stability of linear systems with fractional-order elements," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2317-2328.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2317-2328
    DOI: 10.1016/j.chaos.2007.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Changpin & Yan, Jianping, 2007. "The synchronization of three fractional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 751-757.
    2. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    3. Yan, Jianping & Li, Changpin, 2007. "On chaos synchronization of fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 725-735.
    4. Lu, Jun Guo, 2005. "Chaotic dynamics and synchronization of fractional-order Arneodo’s systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1125-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, Shalabh Kumar & Upadhyay, Dharmendra Kumar & Gupta, Maneesha, 2018. "An approach to improve the performance of fractional-order sinusoidal oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 126-135.
    2. C. Sánchez-López & V. H. Carbajal-Gómez & M. A. Carrasco-Aguilar & I. Carro-Pérez, 2018. "Fractional-Order Memristor Emulator Circuits," Complexity, Hindawi, vol. 2018, pages 1-10, May.
    3. Abir Lassoued & Olfa Boubaker, 2017. "Dynamic Analysis and Circuit Design of a Novel Hyperchaotic System with Fractional-Order Terms," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    4. Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
    5. Palanivel, J. & Suresh, K. & Sabarathinam, S. & Thamilmaran, K., 2017. "Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 33-41.
    6. Waseem, Waseem & Sulaiman, M. & Aljohani, Abdulah Jeza, 2020. "Investigation of fractional models of damping material by a neuroevolutionary approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    2. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    3. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    4. Yu, Yongguang & Li, Han-Xiong & Wang, Sha & Yu, Junzhi, 2009. "Dynamic analysis of a fractional-order Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1181-1189.
    5. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    6. Ouannas, Adel & Odibat, Zaid & Hayat, Tasawar, 2017. "Fractional analysis of co-existence of some types of chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 215-223.
    7. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.
    8. Li, Changpin & Yan, Jianping, 2007. "The synchronization of three fractional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 751-757.
    9. Cruz-Victoria, Juan C. & Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo, 2015. "Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 224-231.
    10. Gu, Haibo & Trujillo, Juan J., 2015. "Existence of mild solution for evolution equation with Hilfer fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 344-354.
    11. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    12. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    13. González-Olvera, Marcos A. & Tang, Yu, 2018. "Contraction analysis for fractional-order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 255-263.
    14. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    15. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    16. Ge, Zheng-Ming & Ou, Chan-Yi, 2007. "Chaos in a fractional order modified Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 262-291.
    17. Zhu, Hao & Zhou, Shangbo & Zhang, Jun, 2009. "Chaos and synchronization of the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1595-1603.
    18. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    19. Ge, Zheng-Ming & Ou, Chan-Yi, 2008. "Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 705-717.
    20. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2317-2328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.