IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i2p499-507.html
   My bibliography  Save this article

Experimental study of dynamic behaviors and routes to chaos in DC–DC boost converters

Author

Listed:
  • Cafagna, D.
  • Grassi, G.

Abstract

This paper illustrates an experimental study of a current-programmed DC–DC boost converter, with the aim of investigating possible pathways through which the converter may enter chaos. In particular, based on experimental measurements, it is shown that variations of input voltage and reference current can generate periodic, subharmonic, quasi-periodic and chaotic behaviors.

Suggested Citation

  • Cafagna, D. & Grassi, G., 2005. "Experimental study of dynamic behaviors and routes to chaos in DC–DC boost converters," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 499-507.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:499-507
    DOI: 10.1016/j.chaos.2004.11.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904007507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.11.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruzbehani, Mohsen & Zhou, Luowei & Wang, Mingyu, 2006. "Bifurcation diagram features of a dc–dc converter under current-mode control," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 205-212.
    2. Li, Hong & Zhang, Bo & Li, Zhong & Halang, Wolfgang A. & Chen, Guanrong, 2009. "Controlling DC–DC converters by chaos-based pulse width modulation to reduce EMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1378-1387.
    3. Milicevic, K. & Pelin, D. & Flegar, I., 2008. "Measurement system for model verification of nonautonomous second-order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 939-948.
    4. Gavagsaz-Ghoachani, R. & Phattanasak, M. & Martin, J.-P. & Pierfederici, S. & Davat, B., 2013. "Predicting the onset of bifurcation and stability study of a hybrid current controller for a boost converter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 262-273.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:499-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.