IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i2p393-401.html
   My bibliography  Save this article

Global dissipativity of neural networks with both variable and unbounded delays

Author

Listed:
  • Song, Qiankun
  • Zhao, Zhenjiang

Abstract

In this paper, the dissipativity of neural networks with both variable and unbounded delays is investigated. By constructing proper Lyapunov functions and using some analytic techniques, several sufficient conditions are given to ensure the dissipativity of neural networks with both variable and unbounded delays. The results extend and improve the earlier publication. An example is given to show the effectiveness of the obtained results.

Suggested Citation

  • Song, Qiankun & Zhao, Zhenjiang, 2005. "Global dissipativity of neural networks with both variable and unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 393-401.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:393-401
    DOI: 10.1016/j.chaos.2004.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904007866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
    2. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    3. Zhao, Weirui & Yan, Anzhi, 2009. "Stability analysis of neural networks with both variable and unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 697-707.
    4. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    6. Ji, Yan & Lou, Xuyang & Cui, Baotong, 2009. "Global output convergence of Cohen–Grossberg neural networks with both time-varying and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 344-354.
    7. Dehao Ruan & Yao Lu, 2024. "Generalized Halanay Inequalities and Asymptotic Behavior of Nonautonomous Neural Networks with Infinite Delays," Mathematics, MDPI, vol. 12(1), pages 1-19, January.
    8. Yang, Haifeng & Chu, Tianguang, 2007. "LMI conditions for stability of neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 557-563.
    9. Jiang, Haijun & Teng, Zhidong, 2006. "Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 83-93.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:393-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.