IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i1p371-381.html
   My bibliography  Save this article

Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity

Author

Listed:
  • Lin, Jui-Sheng
  • Yan, Jun-Juh
  • Liao, Teh-Lu

Abstract

This paper is concerned with the state reconstruction of nonlinear chaotic systems with uncertainty having unknown bounds. An adaptive output feedback sliding mode observer (AOFSMO) is established from the available output measurement. Unlike most works we further consider the presence of input nonlinearity due to physical limitations and no restrictive assumption is imposed on the system. Thus, the range of applicability of the proposed method becomes broad. Finally, a hyperchaotic Rössler system is used as an illustrative example to demonstrate the effectiveness of the proposed AOFSMO design method.

Suggested Citation

  • Lin, Jui-Sheng & Yan, Jun-Juh & Liao, Teh-Lu, 2005. "Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 371-381.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:1:p:371-381
    DOI: 10.1016/j.chaos.2004.09.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lien, Chang-Hua, 2007. "H∞ non-fragile observer-based controls of dynamical systems via LMI optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 428-436.
    2. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    3. Wu, Xiaofeng & Cai, Jianping & Wang, Muhong, 2008. "Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 121-128.
    4. Haeri, Mohammad & Tavazoei, Mohammad Saleh & Naseh, Majid Reza, 2007. "Synchronization of uncertain chaotic systems using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1230-1239.
    5. Naseh, Majid Reza & Haeri, Mohammad, 2009. "Robustness and robust stability of the active sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 196-203.
    6. Zhao, Yang, 2009. "Synchronization of two coupled systems of J-J type using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3035-3041.
    7. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2007. "Determination of active sliding mode controller parameters in synchronizing different chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 583-591.
    8. Ge, Zheng-Ming & Chen, Yen-Sheng, 2005. "Adaptive synchronization of unidirectional and mutual coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 881-888.
    9. Zhao, Yang & Wang, Wei, 2009. "Chaos synchronization in a Josephson junction system via active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 60-66.
    10. Haeri, Mohammad & Emadzadeh, Amir Abbas, 2007. "Synchronizing different chaotic systems using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 119-129.
    11. Lien, Chang-Hua & Cheng, Wen-Chin & Tsai, Che-Hung & Yu, Ker-Wei, 2007. "Non-fragile observer-based controls of linear system via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1530-1537.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:1:p:371-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.