IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v199y2025ip2s0960077925007301.html

Generation and control of grid multi-vortex attractors in memristive Hopfield neural network

Author

Listed:
  • Huang, Lilian
  • Chen, Fangyi
  • Geng, Feiyi
  • Zheng, Lei
  • Yu, Xihong

Abstract

The grid multi-vortex attractors previously generated have typically been derived by integrating the multi-piecewise nonlinear magnetron memristor model into neural network frameworks, with limited exploration of alternative operational mechanisms. To solve this problem, a method for constructing meshed multi-vortex attractors using a memristor-based Hopfield neural network is introduced by this paper. Firstly, a trineuron-based memristor Hopfield neural network is proposed, which can generate and regulate multi-vortex attractors. At the same time, the influence of multilayer logic pulses on the dynamics of the memristor-based Hopfield neural network is focused on by this paper, and it discusses how different pulse modes regulate the attractor state of the network, thereby revealing the profound influence of pulse regulation on network behavior. In addition, the migration control behavior of the multi-vortex attractor and the grid multi-vortex attractor is studied from multiple dimensions. Ultimately, by developing an analog circuit, the numerical simulation results of the MHNN with multi-level logic pulses were replicated. The simulation results indicate the feasibility of implementing the method based on hardware.

Suggested Citation

  • Huang, Lilian & Chen, Fangyi & Geng, Feiyi & Zheng, Lei & Yu, Xihong, 2025. "Generation and control of grid multi-vortex attractors in memristive Hopfield neural network," Chaos, Solitons & Fractals, Elsevier, vol. 199(P2).
  • Handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925007301
    DOI: 10.1016/j.chaos.2025.116717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925007301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Yang, GuiJiang & Ai, Hao & Liu, Wei & Wang, Qiubao, 2023. "Weak signal detection based on variable-situation-potential with time-delay feedback and colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Zhang, Lingshuang & Li, Zhijun & Peng, Yuexi, 2024. "A hidden grid multi-scroll chaotic system coined with two multi-stable memristors," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Jia, Hongyan & Liu, Jingwen & Li, Wei & Du, Meng, 2023. "A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Wang, Shaofu, 2023. "A novel memristive chaotic system and its adaptive sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Wan, Qiuzhen & Yang, Qiao & Liu, Tieqiao & Chen, Chaoyue & Shen, Kun, 2024. "Single direction, grid and spatial multi-scroll attractors in Hopfield neural network with the variable number memristive self-connected synapses," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Gui, Rong, 2024. "Understanding Chua system from the perspective of Duffing," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Zuo, Jiangang & Zhang, Jie & Wei, Xiaodong & Yang, Liu & Cheng, Nana & Lv, Jiliang, 2024. "Design and application of multisroll conservative chaotic system with no-equilibrium, dynamics analysis, circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    4. Lu, Rending & Chen, Zhuguan & Lu, Ling & Bao, Bocheng, 2024. "Designing multi-double-scroll jerk chaotic oscillators based on attractor modulators," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Zhang, Lingshuang & Li, Zhijun & Peng, Yuexi, 2024. "A hidden grid multi-scroll chaotic system coined with two multi-stable memristors," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Yan, Shaohui & Wu, Xinyu & Jiang, Jiawei, 2025. "Dynamics analysis and predefined-time sliding mode synchronization of multi-scroll systems based on a single memristor model," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    8. Zhao, Tingkai & Sun, Xu & Fan, Zhenyi & Du, Baoxiang, 2024. "A new two-parameter controllable multi-scroll 4D Hamiltonian conservative hyperchaotic system with improved nested COS-PWL function," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Wang, Shaofu, 2023. "A novel memristive chaotic system and its adaptive sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Wan, Qiuzhen & Chen, Chaoyue & Liu, Tieqiao & Rao, Huhui & Dong, Jun, 2025. "High-dimensional memristor-coupled multiple neural networks with spatial multi-structure attractors and application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    11. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Sundarapandian Vaidyanathan & Ahmad Taher Azar & Ibrahim A. Hameed & Khaled Benkouider & Esteban Tlelo-Cuautle & Brisbane Ovilla-Martinez & Chang-Hua Lien & Aceng Sambas, 2023. "Bifurcation Analysis, Synchronization and FPGA Implementation of a New 3-D Jerk System with a Stable Equilibrium," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    14. Ding, Xincheng & Fan, Weiwei & Wang, Ning & Su, Yuanhui & Chen, Mo & Lin, Yuan & Xu, Quan, 2025. "Dynamical behaviors and firing patterns in a fully memory-element emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    15. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Remus-Daniel Ene & Nicolina Pop, 2023. "Approximate Closed-Form Solutions for a Class of 3D Dynamical Systems Involving a Hamilton–Poisson Part," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
    17. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    18. Lai, Qiang & Qin, Minghong & Chen, Guanrong, 2025. "Neurodynamics in simple cyclic Hopfield neural network under external electromagnetic radiation and stimulating current inputs," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    19. Tareq Hamadneh & Abderrahmane Abbes & Hassan Al-Tarawneh & Gharib Mousa Gharib & Wael Mahmoud Mohammad Salameh & Maha S. Al Soudi & Adel Ouannas, 2023. "On Chaos and Complexity Analysis for a New Sine-Based Memristor Map with Commensurate and Incommensurate Fractional Orders," Mathematics, MDPI, vol. 11(20), pages 1-16, October.
    20. Huan Ding & Jing Qian & Danning Tian & Yun Zeng, 2025. "Norm-Based Adaptive Control with a Novel Practical Predefined-Time Sliding Mode for Chaotic System Synchronization," Mathematics, MDPI, vol. 13(5), pages 1-19, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925007301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.