IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004242.html
   My bibliography  Save this article

Effective and efficient identifying influential nodes in large scale networks by structural entropy

Author

Listed:
  • Huang, Yuxin
  • Li, Chunping
  • Xiang, Yan
  • Xian, Yantuan
  • Li, Pu
  • Yu, Zhengtao

Abstract

Identifying influential nodes in large-scale networks is a pivotal challenge in network analysis. Traditional node identification methods, such as those based on node degree, primarily emphasize local neighbors without considering a node’s global importance within the network. Conversely, global feature-based methods like betweenness centrality (BC) are computationally prohibitive for large-scale networks. To address these limitations, we propose a novel community-level node influence calculation method grounded in structural entropy. This approach integrates both local significance within a community and global influence across communities. The method begins by employing community detection algorithms to cluster closely related nodes into communities. Subsequently, node influence is quantified by analyzing changes in structural entropy resulting from a node’s departure from its community and its integration into an adjacent community. Experimental evaluations on eleven real-world networks demonstrate that our method reduces the computational time for influential node identification by a factor of 76 compared to BC and other conventional approaches. Furthermore, in a network comprising seventy thousand nodes, our method enhances network efficiency by 20% relative to the LE method, underscoring its efficiency and effectiveness.

Suggested Citation

  • Huang, Yuxin & Li, Chunping & Xiang, Yan & Xian, Yantuan & Li, Pu & Yu, Zhengtao, 2025. "Effective and efficient identifying influential nodes in large scale networks by structural entropy," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004242
    DOI: 10.1016/j.chaos.2025.116411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    3. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Lei, Mingli & Cheong, Kang Hao, 2022. "Node influence ranking in complex networks: A local structure entropy approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    8. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    3. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    5. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Nikougoftar, Elaheh, 2024. "Strategic node identification in complex network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Wang, Feifei & Sun, Zejun & Gan, Quan & Fan, Aiwan & Shi, Hesheng & Hu, Haifeng, 2022. "Influential node identification by aggregating local structure information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Guo, Shu & Lyu, Jing & Zhu, Xuebin & Fan, Hanwen, 2025. "Multi-feature fusion for the evaluation of strategic nodes and regional importance in maritime networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    12. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    14. Li, Xianghua & Teng, Min & Jiang, Shihong & Han, Zhen & Gao, Chao & Nekorkin, Vladimir & Radeva, Petia, 2025. "A dynamic station-line centrality for identifying critical stations in bus-metro networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    15. Meng, Bo & Rezaeipanah, Amin, 2025. "Development of a multidimensional centrality metric for ranking nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    16. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    19. Li, Shuyu & Li, Xiang, 2023. "Influence maximization in hypergraphs: A self-optimizing algorithm based on electrostatic field," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.