IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002796.html
   My bibliography  Save this article

A novel finite-time non-singular robust control for robotic manipulators

Author

Listed:
  • Gao, Jinfeng
  • Tan, Zhonghao
  • Li, Lebao
  • Jia, Guoqiang
  • Liu, Peter Xiaoping

Abstract

Robotic manipulators have been extensively used in the area of industry, agriculture, and medicine. Parameter uncertainties and external complex disturbances both bring challenges in achieving finite-time high precision control of robotic manipulators. This study addresses the finite-time non-singular robust control problem of robotic manipulators with parameter variations and external complex disturbances. To enable the tracking error of robotic manipulator system with uncertainties to converge within finite time, a novel finite-time non-singular robust control (NFNRC) approach is proposed. To make the tracking error of robotic manipulator system have faster convergence rate, we design a new nonlinear term in the robust control function. With Lyapunov stability theorem, the finite-time stability of the robotic manipulator system is ensured. Performance comparisons with non-singular terminal sliding mode control (NTSM) and sliding mode control (SMC) are studied on a nonlinear robotic manipulator system. The results validate the efficacy of the designed robotic manipulator control scheme.

Suggested Citation

  • Gao, Jinfeng & Tan, Zhonghao & Li, Lebao & Jia, Guoqiang & Liu, Peter Xiaoping, 2025. "A novel finite-time non-singular robust control for robotic manipulators," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002796
    DOI: 10.1016/j.chaos.2025.116266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Znegui, Wafa & Gritli, Hassène & Belghith, Safya, 2020. "Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. He, Xinyi & Li, Xiaodi & Nieto, Juan J., 2021. "Finite-time stability and stabilization for time-varying systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Gritli, Hassène & Belghith, Safya, 2017. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 72-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Bo & Jiang, Hui & Liu, Qihuai & Jiang, Guirong, 2024. "Periodic gait classification and control of a biped model with telescopic legs and pulse thrust," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
    5. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    6. Znegui, Wafa & Gritli, Hassène & Belghith, Safya, 2020. "Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Jiang, Ziling & Huang, Fan & Shao, Haijian & Cai, Shuiming & Lu, Xiaobo & Jiang, Shengqin, 2023. "Time-varying finite-time synchronization analysis of attack-induced uncertain neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Wu, Jie & He, Xinyi & Li, Xiaodi, 2022. "Finite-time stabilization of time-varying nonlinear systems based on a novel differential inequality approach," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    10. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Rao, XiaoBo & Gao, JianShe & Ding, ShunLiang & Liang, Jie & Zhang, Jiangang, 2023. "Multistability of gaits, the basin of attraction and its external topology in the simplest passive walking model on stairs," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Safartoobi, Masoumeh & Dardel, Morteza & Daniali, Hamidreza Mohammadi, 2024. "Piezoelectric energy harvesting from walking motion of a passive biped robot model with flexible legs," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    13. Gritli, Hassène, 2019. "Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 127-145.
    14. Yajuan Li & Huanbin Xue, 2024. "Robust Stability Analysis of Switched Neural Networks with Application in Psychological Counseling Evaluation System," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
    15. Shi, Jian-Fei & Gou, Peng-Bing & Gou, Xiang-Feng & Jin, Wu-Yin & Chen, Guo-Long, 2025. "Rich hidden dynamics in a two-parameter plane for spur gear system," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.