IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002218.html
   My bibliography  Save this article

Effect of electromagnetic radiation on double-loop neural networks and its application to image encryption

Author

Listed:
  • Lai, Qiang
  • Chen, Yidan

Abstract

Neurons often exhibit complex chaotic phenomena when they are electrically stimulated, and this property provides an important theoretical basis for the study of neural dynamics. In this paper, a novel double-loop neural network model is proposed to simulate electromagnetic radiation by introducing a simple quadratic function memristor, which acts on different neurons in the neural network, and systematically investigates the differential effects of electromagnetic radiation on the kinetic behaviour of neurons. It is found that the system exhibits rich dynamical phenomena, such as the coexistence of chaotic attractors and amplitude modulation, as the target neurons are changed. When electromagnetic radiation is applied to a specific neuron, the chaotic attractor breaks down with the change of a key parameter. The physical realizability of the theoretical model is verified by a digital circuit platform built with a microcontroller, and the experimental results are demonstrated. In addition, an efficient bit-level image encryption algorithm is designed based on the chaotic properties of this neural network model. The algorithm obfuscates the image pixel dimensions by a parity hopping diffusion operation and combines with chaotic sequences to randomize the arrangement of pixel positions, which significantly improves the security of the encryption scheme. Finally, the encryption performance of the algorithm is verified by various evaluation means.

Suggested Citation

  • Lai, Qiang & Chen, Yidan, 2025. "Effect of electromagnetic radiation on double-loop neural networks and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002218
    DOI: 10.1016/j.chaos.2025.116208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Lin, Hairong & Wang, Chunhua, 2020. "Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Wang, Xingyuan & Du, Xiaohui, 2022. "Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    5. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Xie, Jiaquan & Xie, Zhikuan & Xu, Huidong & Li, Zhanlong & Shi, Wei & Ren, Jiani & Shi, Haoming, 2024. "Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Robert M. Kent & Wendson A. S. Barbosa & Daniel J. Gauthier, 2024. "Controlling chaos using edge computing hardware," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Zhu, Wanting & Sun, Kehui & Wang, Huihai & Fu, Longxiang & Minati, Ludovico, 2024. "Dynamics, synchronization and analog circuit implementation of a discrete neuron-like map with pulsating spiral dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Wang, Chunhua & Luo, Dingwei & Deng, Quanli & Yang, Gang, 2024. "Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    4. Wan, Qiuzhen & Yang, Qiao & Liu, Tieqiao & Chen, Chaoyue & Shen, Kun, 2024. "Single direction, grid and spatial multi-scroll attractors in Hopfield neural network with the variable number memristive self-connected synapses," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    5. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    8. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    10. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    14. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    15. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Xiong, Yongyong & Zhang, Xiao & Chedjou, Jean Chamberlain & Wu, Yesen & Jiang, Donghua & Kengne, Jacques & Ahmad, Jawad, 2025. "Super extreme event and coexisting attractors in a novel chaotic snap system with hyperbolic sine function: Theoretical investigations and circuit experiments," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    17. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    18. Khodadadi, Vahid & Nowshiravan Rahatabad, Fereidoun & Sheikhani, Ali & Jafarnia Dabanloo, Nader, 2023. "Nonlinear analysis of biceps surface EMG signals for chaotic approaches," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    20. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.