IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001432.html
   My bibliography  Save this article

A novel uncertainty-aware liquid neural network for noise-resilient time series forecasting and classification

Author

Listed:
  • Akpinar, Muhammed Halil
  • Atila, Orhan
  • Sengur, Abdulkadir
  • Salvi, Massimo
  • Acharya, U.R.

Abstract

While Liquid Neural Networks (LNN) are promising for modeling dynamic systems, there is no internal mechanism that quantifies the uncertainty of a prediction. This can produce overly confident outputs, especially when operating in noisy or uncertain environments. One potential issue that might be highlighted with LNNs is that their highly flexible connectivity leads to overfitting on the training data. This is targeted by the present work, which introduces the uncertainty-aware LNN framework, the UA-LNN, by considering Monte Carlo dropout for quantifying the uncertainty of LNNs. The proposed UA-LNN enhances the stochasticity of both training and inference, hence allowing for more reliable predictions by modeling output uncertainty. We applied the UA-LNN in the two tasks of time series forecasting and multi-class classification, where we showed its performance on a wide range of datasets and under different noise conditions. The proposed UA-LNN has shown the best results, outperforming the benchmarks of standard LNN, Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) models in terms of R2, RMSE, and MAE consistently. Additionally, for performance metrics such as accuracy, precision, recall, and F1 score, the results showed improvement over LSTM and MLP models in multi-classification tasks. More importantly, under heavy noise, the UA-LNN maintained superior performance, while demonstrating enhanced classification capabilities across many datasets with challenging tasks, such as arrhythmia detection and cancer classification.

Suggested Citation

  • Akpinar, Muhammed Halil & Atila, Orhan & Sengur, Abdulkadir & Salvi, Massimo & Acharya, U.R., 2025. "A novel uncertainty-aware liquid neural network for noise-resilient time series forecasting and classification," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001432
    DOI: 10.1016/j.chaos.2025.116130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash Kumar Karn & Iman Ardekani & Waleed H. Abdulla, 2024. "Generalized Framework for Liquid Neural Network upon Sequential and Non-Sequential Tasks," Mathematics, MDPI, vol. 12(16), pages 1-21, August.
    2. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    3. Meshari D. Alanazi & Ahmad Saeed & Muhammad Islam & Shabana Habib & Hammad I. Sherazi & Sheroz Khan & Mohammad Munawar Shees, 2023. "Enhancing Short-Term Electrical Load Forecasting for Sustainable Energy Management in Low-Carbon Buildings," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
    2. Akash Mahajan & Srijita Das & Wencong Su & Van-Hai Bui, 2024. "Bayesian-Neural-Network-Based Approach for Probabilistic Prediction of Building-Energy Demands," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    3. Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
    4. Huiqun Yu & Haoyi Sun & Yueze Li & Chunmei Xu & Chenkun Du, 2024. "Enhanced Short-Term Load Forecasting: Error-Weighted and Hybrid Model Approach," Energies, MDPI, vol. 17(21), pages 1-22, October.
    5. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
    6. Jun Li & Xingzhao Zhang & Qingsong Hu & Fuxi Zhang & Oleg Gaidai & Leilei Chen, 2024. "Data Augmentation Technique Based on Improved Time-Series Generative Adversarial Networks for Power Load Forecasting in Recirculating Aquaculture Systems," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    7. Piotr Obrycki & Krzysztof Perlicki & Marek Stawowy, 2025. "Peak Shaving Strategy in the Context of the Charging Process of a Battery Energy Storage System in the Railway Microgrid," Energies, MDPI, vol. 18(11), pages 1-21, May.
    8. Yuyang Zhang & Lei Cui & Wenqiang Yan, 2025. "Integrating Kolmogorov–Arnold Networks with Time Series Prediction Framework in Electricity Demand Forecasting," Energies, MDPI, vol. 18(6), pages 1-18, March.
    9. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    10. Serrano-Arévalo, Tania Itzel & López-Flores, Francisco Javier & Raya-Tapia, Alma Yunuen & Ramírez-Márquez, César & Ponce-Ortega, José María, 2023. "Optimal expansion for a clean power sector transition in Mexico based on predicted electricity demand using deep learning scheme," Applied Energy, Elsevier, vol. 348(C).
    11. Zhuoqun Zou & Jing Wang & Ning E & Can Zhang & Zhaocai Wang & Enyu Jiang, 2023. "Short-Term Power Load Forecasting: An Integrated Approach Utilizing Variational Mode Decomposition and TCN–BiGRU," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Oğuzhan Timur & Halil Yaşar Üstünel, 2025. "Short-Term Electric Load Forecasting for an Industrial Plant Using Machine Learning-Based Algorithms," Energies, MDPI, vol. 18(5), pages 1-22, February.
    13. Xinjian Xiang & Tianshun Yuan & Guangke Cao & Yongping Zheng, 2024. "Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm," Energies, MDPI, vol. 17(8), pages 1-21, April.
    14. Chengfei Qi & Yanli Feng & Junling Wan & Xinying Mao & Peisen Yuan, 2025. "SFPFMformer: Short-Term Power Load Forecasting for Proxy Electricity Purchase Based on Feature Optimization and Multiscale Decomposition," Mathematics, MDPI, vol. 13(10), pages 1-22, May.
    15. Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
    16. Yikai Hou & Chao Ma & Xiang Li & Yinggang Sun & Haining Yu & Zhou Fang, 2025. "Time Series Foundation Model for Improved Transformer Load Forecasting and Overload Detection," Energies, MDPI, vol. 18(3), pages 1-15, January.
    17. Serdal Atiç & Ercan Izgi, 2024. "Smart Reserve Planning Using Machine Learning Methods in Power Systems with Renewable Energy Sources," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    18. George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.