IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000384.html
   My bibliography  Save this article

Fractional-order clique functions to solve left-sided Bessel fractional integro-differential equations

Author

Listed:
  • Rahimkhani, P.
  • Ordokhani, Y.
  • Razzaghi, M.

Abstract

In this study, we consider a new class of nonlinear integro-differential equations with the Bessel fractional integral-derivative. For solving the considered equations, fractional-order clique functions (FCFs), and some of their properties are introduced. First, we approximate the unknown function and its derivatives/integrals in terms of the FCFs. Then, we substitute these approximations and their derivatives/integrals into the considered equation. The left-sided Bessel fractional derivative/integral (LSBFD/I) of the unknown function is approximated using the properties of the FCFs and LSBFD/I. By collocating the resulting residual function at the well-known shifted Legendre points, we derive a system of nonlinear algebraic equations. In addition, convergence analysis of the proposed approach is discussed. Finally, the presented strategy is applied to some numerical experiments to verify its applicability and accuracy.

Suggested Citation

  • Rahimkhani, P. & Ordokhani, Y. & Razzaghi, M., 2025. "Fractional-order clique functions to solve left-sided Bessel fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000384
    DOI: 10.1016/j.chaos.2025.116025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Rahimkhani, Parisa & Heydari, Mohammad Hossein, 2023. "Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2024. "Time–space fractional Euler–Poisson–Darboux equation with Bessel fractional derivative in infinite and finite domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 383-402.
    4. Maurya, Rahul Kumar & Li, Dongxia & Singh, Anant Pratap & Singh, Vineet Kumar, 2024. "Numerical algorithm for a general fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 405-432.
    5. Elina Shishkina & Sergey Sitnik, 2019. "A Fractional Equation with Left-Sided Fractional Bessel Derivatives of Gerasimov–Caputo Type," Mathematics, MDPI, vol. 7(12), pages 1-21, December.
    6. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2023. "On spectral polar fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 636-663.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2024. "Time–space fractional Euler–Poisson–Darboux equation with Bessel fractional derivative in infinite and finite domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 383-402.
    2. Azamat Dzarakhohov & Yuri Luchko & Elina Shishkina, 2021. "Special Functions as Solutions to the Euler–Poisson–Darboux Equation with a Fractional Power of the Bessel Operator," Mathematics, MDPI, vol. 9(13), pages 1-18, June.
    3. Marasi, H.R. & Derakhshan, M.H. & Ghuraibawi, Amer A. & Kumar, Pushpendra, 2024. "A novel method based on fractional order Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of distributed order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 405-424.
    4. Savadkoohi, Fateme Rezaei & Rabbani, Mohsen & Allahviranloo, Tofigh & Malkhalifeh, Mohsen Rostamy, 2024. "A fractional multi-wavelet basis in Banach space and solving fractional delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Rahimkhani, Parisa & Heydari, Mohammad Hossein, 2023. "Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    6. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Alquhayz, Hani & Abdalla, Manal Z.M. & Alhagyan, Mohammed & Gargouri, Ameni & Shoaib, Muhammad, 2023. "Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Derakhshan, Mohammad Hossein & Rezaei, Hamid & Marasi, Hamid Reza, 2023. "An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 315-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.