IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000219.html
   My bibliography  Save this article

Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations

Author

Listed:
  • Chakraborty, Samiran
  • Agrawal, Shivam Kumar
  • Nelakanti, Gnaneshwar

Abstract

In this article, we develop the Jacobi spectral multi-Galerkin method alongside the Kumar-Sloan technique to approximate systems of non-linear Volterra Hammerstein integral equations. We conduct a comprehensive superconvergence analysis for both smooth and weakly singular kernels in both infinity and weighted-L2 norms. Our findings include the derivation of superconvergence rates for the multi-Galerkin method without resorting to iterated versions. Notably, our conclusions highlight the enhanced performance of multi-Galerkin approximation compared to Jacobi spectral Galerkin methods, while maintaining the same system size for both Jacobi spectral multi-Galerkin and Galerkin methods. To validate the robustness and efficiency of our theoretical results, numerical examples are provided.

Suggested Citation

  • Chakraborty, Samiran & Agrawal, Shivam Kumar & Nelakanti, Gnaneshwar, 2025. "Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000219
    DOI: 10.1016/j.chaos.2025.116008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golbabai, A. & Keramati, B., 2008. "Easy computational approach to solution of system of linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 568-574.
    2. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    3. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Chakraborty, Samiran & Nelakanti, Gnaneshwar, 2023. "Superconvergence of system of Volterra integral equations by spectral approximation method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildirim, Ahmet, 2009. "Homotopy perturbation method for the mixed Volterra–Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2760-2764.
    2. J., Kokila & M., Vellappandi & D., Meghana & V., Govindaraj, 2023. "Optimal control study on Michaelis–Menten kinetics — A fractional version," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 571-592.
    3. Deep, Amar & Deepmala, & Rabbani, Mohsen, 2021. "A numerical method for solvability of some non-linear functional integral equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    4. Chakraborty, Samiran & Nelakanti, Gnaneshwar, 2023. "Superconvergence of system of Volterra integral equations by spectral approximation method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Ali, Hegagi Mohamed & Ameen, Ismail Gad & Gaber, Yasmeen Ahmed, 2024. "The effect of curative and preventive optimal control measures on a fractional order plant disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 496-515.
    7. Alim, Md. Abdul & Kawser, M. Abul, 2023. "Illustration of the homotopy perturbation method to the modified nonlinear single degree of freedom system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Li, Hesong & Li, Zhaoting & Zhang, Hongbo & Wang, Yi, 2025. "An adaptive mesh refinement method considering control errors for pseudospectral discretization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 232(C), pages 140-159.
    9. Hoang Viet Long & Haifa Bin Jebreen & Stefania Tomasiello, 2020. "Multi-Wavelets Galerkin Method for Solving the System of Volterra Integral Equations," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    10. Matin far, Mashallah & Pourabd, Masoumeh, 2015. "Moving least square for systems of integral equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 879-889.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.