IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011049.html
   My bibliography  Save this article

Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses

Author

Listed:
  • Fossi, Jules Tagne
  • Njitacke, Zeric Tabekoueng
  • Tankeu, William Nguimeya
  • Mendimi, Joseph Marie
  • Awrejcewicz, Jan
  • Atangana, Jacques

Abstract

Resistor(R), Inductor(L) and Capacitor(C) are electronic components used to evaluate the effects of joule heat, magnetic field and electric field respectively. In neuroscience, these components are used to design biological synapses, which allows several biological neurons to be interconnected with each other. In this manuscript, we design a neural network from three distinct neural circuits and different electronic components (RLC). This neural model consists of a photosensitive neuron, an auditory neuron and a heat-sensitive neuron interconnected respectively by a resistor, an inductor and a capacitor. This setup allows to estimate the magnetic field, electric field and the joule heat effect in this neural network. Analyzes on its dynamic model have made it possible to understand that the momentary variation of the various intrinsic parameters of the coupling channels leads the neural circuit to regular (periodic) or irregular (chaotic) behaviors. In addition, we found that it can be sensitive to initial conditions, which explains the phenomenon of coexisting attractors that can arise in this coupled neuron model. In addition, phase synchronization stability can be achieved as the coupling channel parameters increase. This important tool can find its application in the biomedical field for the manufacture of artificial neurons.

Suggested Citation

  • Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011049
    DOI: 10.1016/j.chaos.2023.114202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.