IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005896.html
   My bibliography  Save this article

A study of the pulse propagation with a generalized Kudryashov equation

Author

Listed:
  • Hu, Xiang
  • Yin, Zhixiang

Abstract

In this work, the complete discrimination system for polynomial method is applied to conduct qualitative and quantitative analysis of a generalized Kudryashov equation. With the aid of traveling wave transformation, this model is transformed into a dynamical system, then the Hamiltonian and topological properties are presented. The existences of soliton and periodic solutions are well addressed via the bifurcation method. All the existing single traveling wave solutions are also obtained. Especially, considering the external perturbation terms, the chaotic behavior of this equation is analyzed in detail. To the best of our knowledge, this is the first time that the chaotic behavior is investigated for a generalized Kudryashov equation.

Suggested Citation

  • Hu, Xiang & Yin, Zhixiang, 2022. "A study of the pulse propagation with a generalized Kudryashov equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005896
    DOI: 10.1016/j.chaos.2022.112379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai, Yue & Li, Yaxi & Huang, Liuke, 2022. "Topological properties and wave structures of Gilson–Pickering equation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Seadawy, Aly R. & Rizvi, Syed T.R. & Mustafa, B. & Ali, K. & Althubiti, Saeed, 2022. "Chirped periodic waves for an cubic-quintic nonlinear Schrödinger equation with self steepening and higher order nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.
    5. Nandy, Sudipta & Barthakur, Abhijit, 2021. "Dark-bright soliton interactions in coupled nonautonomous nonlinear Schrödinger equation with complex potentials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Justin, Mibaile & Hubert, Malwe Boudoue & Betchewe, Gambo & Doka, Serge Yamigno & Crepin, Kofane Timoleon, 2018. "Chirped solitons in derivative nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 49-54.
    7. Rizvi, Syed T.R. & Seadawy, Aly R. & Ahmed, Sarfaraz & Younis, Muhammad & Ali, Kashif, 2021. "Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Deffo, Guy Roger & Yamgoué, Serge Bruno & Pelap, François Beceau, 2021. "Bifurcation of solitary and periodic waves of an extended cubic-quintic Schrödinger equation with nonlinear dispersion effects governing modulated waves in a bandpass inductor-capacitor network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolay A. Kudryashov, 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 11(10), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aly R. Seadawy & Syed T. R. Rizvi & Hanadi Zahed, 2023. "Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficien," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    2. Anjan Biswas & Jose Vega-Guzman & Yakup Yıldırım & Luminita Moraru & Catalina Iticescu & Abdulah A. Alghamdi, 2023. "Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    3. Nikolay A. Kudryashov, 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
    4. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Yu, Weitian & Liu, Wenjun & Zhang, Hongxin, 2022. "Soliton molecules in the kink, antikink and oscillatory background," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Wu, Gang-Zhou & Fang, Yin & Wang, Yue-Yue & Wu, Guo-Cheng & Dai, Chao-Qing, 2021. "Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Khater, Mostafa M.A., 2022. "Nonparaxial pulse propagation in a planar waveguide with Kerr–like and quintic nonlinearities; computational simulations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Wensheng Chen & Jalil Manafian & Khaled Hussein Mahmoud & Abdullah Saad Alsubaie & Abdullah Aldurayhim & Alabed Alkader, 2023. "Cutting-Edge Analytical and Numerical Approaches to the Gilson–Pickering Equation with Plenty of Soliton Solutions," Mathematics, MDPI, vol. 11(16), pages 1-35, August.
    9. Rizvi, Syed T.R. & Seadawy, Aly R. & Farah, N. & Ahmad, S., 2022. "Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Samina, Samina & Jhangeer, Adil & Chen, Zili, 2023. "Nonlinear dynamics of porous fin temperature profile: The extended simplest equation approach," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.