IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921011012.html
   My bibliography  Save this article

Dynamics of a ring of three fractional-order Duffing oscillators

Author

Listed:
  • Barba-Franco, J.J.
  • Gallegos, A.
  • Jaimes-Reátegui, R.
  • Pisarchik, A.N.

Abstract

We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincaré sections, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.

Suggested Citation

  • Barba-Franco, J.J. & Gallegos, A. & Jaimes-Reátegui, R. & Pisarchik, A.N., 2022. "Dynamics of a ring of three fractional-order Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011012
    DOI: 10.1016/j.chaos.2021.111747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Borkowski & A. Stefanski, 2015. "FFT Bifurcation Analysis of Routes to Chaos via Quasiperiodic Solutions," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, December.
    2. Ge, Zheng-Ming & Ou, Chan-Yi, 2007. "Chaos in a fractional order modified Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 262-291.
    3. Chandrakala Meena & Pranay Deep Rungta & Sudeshna Sinha, 2020. "Resilience of networks of multi-stable chaotic systems to targetted attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(11), pages 1-9, November.
    4. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaotic dynamics of the fractionally damped Duffing equation," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1459-1468.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Silva, A. & Gilardi-Velázquez, H.E. & Campos, Eric, 2021. "Emergence of synchronous behavior in a network with chaotic multistable systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    4. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    5. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    6. Asiain, Erick & Garrido, Rubén, 2021. "Anti-Chaos control of a servo system using nonlinear model reference adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Wang, Mengjiao & Liao, Xiaohan & Deng, Yong & Li, Zhijun & Su, Yongxin & Zeng, Yicheng, 2020. "Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Luo, Runzi & Liu, Shuai & Song, Zijun & Zhang, Fang, 2023. "Fixed-time control of a class of fractional-order chaotic systems via backstepping method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Ali, Irfan & Masood, W. & Rizvi, H. & Alrowaily, Albandari W. & Ismaeel, Sherif M.E. & El-Tantawy, S.A., 2023. "Archipelagos, islands, necklaces, and other exotic structures in external force-driven chaotic dusty plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Liang Chen & Chengdai Huang & Haidong Liu & Yonghui Xia, 2019. "Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    11. Shen, Yongjun & Yang, Shaopu & Sui, Chuanyi, 2014. "Analysis on limit cycle of fractional-order van der Pol oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 94-102.
    12. María Pilar Velasco & David Usero & Salvador Jiménez & Luis Vázquez & José Luis Vázquez-Poletti & Mina Mortazavi, 2020. "About Some Possible Implementations of the Fractional Calculus," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
    13. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    14. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.
    15. Ouannas, Adel & Khennaoui, Amina-Aicha & Odibat, Zaid & Pham, Viet-Thanh & Grassi, Giuseppe, 2019. "On the dynamics, control and synchronization of fractional-order Ikeda map," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 108-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.