IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921002654.html
   My bibliography  Save this article

Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order

Author

Listed:
  • Yang, Shuai
  • Hu, Cheng
  • Yu, Juan
  • Jiang, Haijun

Abstract

Based on the non-separation method, the finite-time projective synchronization of fractional-order quaternion-valued memristive networks with discontinuous activation functions is investigated in this paper. Firstly, the sign function related to quaternion is introduced and some properties concerning it are developed. Secondly, two different quaternion-valued controllers are designed by feat of the proposed sign function. Subsequently, several synchronization conditions are derived and the settling times are evaluated validly by the established finite-time fractional-order inequality. Especially noteworthy is that the addressed networks are converted into systems with parametric uncertainty in the framework of differential inclusion and measurable selection. Finally, a numerical example is given to demonstrate the correctness of theoretical analyses.

Suggested Citation

  • Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002654
    DOI: 10.1016/j.chaos.2021.110911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    3. Wang, Weiping & Jia, Xiao & Luo, Xiong & Kurths, Jürgen & Yuan, Manman, 2019. "Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 85-96.
    4. Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun & Cao, Jinde, 2020. "Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    5. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    6. James M. Tour & Tao He, 2008. "The fourth element," Nature, Nature, vol. 453(7191), pages 42-43, May.
    7. Meng Hui & Chen Wei & Jiao Zhang & Herbert Ho-Ching Iu & Ni Luo & Rui Yao & Lin Bai, 2020. "Finite-Time Projective Synchronization of Fractional-Order Memristive Neural Networks with Mixed Time-Varying Delays," Complexity, Hindawi, vol. 2020, pages 1-27, June.
    8. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Kailong & Hu, Cheng & Yu, Juan, 2023. "Direct approach-based synchronization of fully quaternion-valued neural networks with inertial term and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    3. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    2. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    3. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    4. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    5. Zhu, Sha & Bao, Haibo, 2022. "Event-triggered synchronization of coupled memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    6. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    7. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Mathiyalagan, K. & Park, Ju H. & Sakthivel, R., 2015. "Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 967-979.
    9. Huaiqin Wu & Luying Zhang & Sanbo Ding & Xueqing Guo & Lingling Wang, 2013. "Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    10. Chen, Yonghui & Xue, Yu & Yang, Xiaona & Zhang, Xian, 2023. "A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    11. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    13. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    14. Sakthivel, R. & Anbuvithya, R. & Mathiyalagan, K. & Ma, Yong-Ki & Prakash, P., 2016. "Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 213-228.
    15. Bao, Haibo & Park, Ju H. & Cao, Jinde, 2015. "Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 543-556.
    16. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    17. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    18. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    19. Fei Yu & Li Liu & Binyong He & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Yun Song & Sichun Du & Qiuzhen Wan, 2019. "Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    20. Tang, Tianfeng & Qin, Gang & Zhang, Bin & Cheng, Jun & Cao, Jinde, 2024. "Event-based asynchronous state estimation for Markov jump memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 473(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.