IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920309061.html
   My bibliography  Save this article

Explosive and semi-explosive death in coupled oscillators

Author

Listed:
  • Sun, Zhongkui
  • Liu, Shutong
  • Zhao, Nannan

Abstract

In this paper, we propose a new kind of transition process from oscillation to death state that is different from the traditional explosive death called semi-explosive death. In this process, two kinds of death arise in different ways. We investigate the occurrence of semi-explosive death transition for the first time on globally conjugate-coupled Van der Pol (VdP) oscillators with asymmetry factor. Semi-explosive death is an irreversible transition of half first order and half second order. That is, this process not only happens with an abrupt, irreversible transition that is a common feature of first order phase transition, but also includes a continuous second order change. Moreover, the forward and the backward second order transition points for this transition have been obtained theoretically, which is in complete agreement with the numerical results. Finally, the details of the transition mechanisms between semi-explosive death and explosive death along with dependence of asymmetry factor and damping coefficient are also discussed theoretically and numerically.

Suggested Citation

  • Sun, Zhongkui & Liu, Shutong & Zhao, Nannan, 2021. "Explosive and semi-explosive death in coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920309061
    DOI: 10.1016/j.chaos.2020.110514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nannan Zhao & Zhongkui Sun & Wei Xu, 2018. "Amplitude death induced by mixed attractive and repulsive coupling in the relay system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pranesh, Samana & Gupta, Sayan, 2023. "Explosive death transitions in complex networks of limit cycle and chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Nannan & Zhang, Xuexue, 2023. "Impact of higher-order interactions on amplitude death of coupled oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Korneev, I.A. & Semenov, V.V. & Slepnev, A.V. & Vadivasova, T.E., 2021. "Complete synchronization of chaos in systems with nonlinear inertial coupling," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Sharma, Amit, 2021. "Explosive synchronization through attractive-repulsive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Zhao, Nannan & Sun, Zhongkui & Song, Xueli & Xiao, Yuzhu, 2022. "Amplitude death in multiplex networks with competing attractive and repulsive interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Yonkeu, R. Mbakob, 2023. "Stochastic bifurcations induced by Lévy noise in a fractional trirhythmic van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920309061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.