IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305351.html
   My bibliography  Save this article

Non-Lagrangian approach for coupled complex Ginzburg-Landau systems with higher order-dispersion

Author

Listed:
  • Djob, Roger Bertin
  • Kenfact-Jiotsa, Aurelien
  • Govindarajan, A.

Abstract

It is known that after a particular distance of evolution in fiber lasers, two (input) asymmetric soliton like pulses emerge as two (output) symmetric pulses having same and constant energy. We report such a compensation technique in dispersion managed fiber lasers by means of a semi-analytical method known as collective variable approach (CVA) with including third-order dispersion (TOD). The minimum length of fiber laser, at which the output symmetric pulses are obtained from the input asymmetric ones, is calculated for each and every pulse parameters numerically by employing Runge-Kutta fourth order method. The impacts of intercore linear coupling, asymmetric nature of initial parameters and TOD on the evolution of pulse parameters and on the minimum length are also investigated. It is found that strong intercore linear coupling and asymmetric nature of input pulse parameters result in the reduction of fiber laser length. Also, the role of TOD tends to increase the width of the pulses as well as their energies. Besides, chaotic patterns and bifurcation points on the minimum length of the fiber owing to the impact of TOD are also reported in a nutshell.

Suggested Citation

  • Djob, Roger Bertin & Kenfact-Jiotsa, Aurelien & Govindarajan, A., 2020. "Non-Lagrangian approach for coupled complex Ginzburg-Landau systems with higher order-dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305351
    DOI: 10.1016/j.chaos.2019.109578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    3. Alrashed, Reyouf & Djob, Roger Bertin & Alshaery, A.A. & Alkhateeb, Sadah A. & Nuruddeen, R.I., 2022. "Collective variables approach to the vector-coupled system of Chen-Lee-Liu equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.