IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v119y2019icp263-268.html
   My bibliography  Save this article

A synergy of punishment and extortion in cooperation dilemmas driven by the leader

Author

Listed:
  • Wang, JunFang
  • Guo, JinLi

Abstract

Punishment and extortion have been acknowledged to play key roles in sustaining and catalysing cooperation respectively, yet we still have to face a rather gloomy evolutionary outlook if we continue using them alone in a high betrayal temptation. This paper proposes a new strategy that combines punishment and extortion used by one leader. The results show that a node with a large degree is more capable of influencing others. Using the combined strategy, one large degree node could push everyone's mutual cooperation in a probability close to or equal to 1. Moreover, he/she obtains the highest scores. We also demonstrate that the combined strategy is superior to some classic winning strategies (WSLS). The findings show the synergy of punishment and extortion is effective in promoting cooperation. An immediate implication is that it combines two strategies’ merits, and the leader can choose the right strategy between them at the right time to fight the defectors. And the results are robust to game betrayer temptation, competitive strategies. Complementary, it has strong flexibility for the user.

Suggested Citation

  • Wang, JunFang & Guo, JinLi, 2019. "A synergy of punishment and extortion in cooperation dilemmas driven by the leader," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 263-268.
  • Handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:263-268
    DOI: 10.1016/j.chaos.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918307471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bo & Li, Miao & Deng, Ruipu, 2015. "The evolution of cooperation in spatial prisoner’s dilemma games with heterogeneous relationships," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 168-175.
    2. Imhof, Lorens & Nowak, Martin & Fudenberg, Drew, 2007. "Tit-for-Tat or Win-Stay, Lose-Shift?," Scholarly Articles 3200671, Harvard University Department of Economics.
    3. Xuelong Li & Marko Jusup & Zhen Wang & Huijia Li & Lei Shi & Boris Podobnik & H. Eugene Stanley & Shlomo Havlin & Stefano Boccaletti, 2018. "Punishment diminishes the benefits of network reciprocity in social dilemma experiments," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(1), pages 30-35, January.
    4. Christoph Adami & Arend Hintze, 2013. "Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    5. Jonathan E Bone & Brian Wallace & Redouan Bshary & Nichola J Raihani, 2016. "Power Asymmetries and Punishment in a Prisoner’s Dilemma with Variable Cooperative Investment," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    6. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Li, Tong & Yu, Yong, 2018. "Synergy punishment promotes cooperation in spatial public good game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 214-218.
    7. Korn, A. & Schubert, A. & Telcs, A., 2009. "Lobby index in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2221-2226.
    8. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    9. Xu, Bo & Lan, Yini, 2016. "The distribution of wealth and the effect of extortion in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 276-280.
    10. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    11. Wu, Yonghui & Li, Xing & Zhang, Zhongzhi & Rong, Zhihai, 2013. "The different cooperative behaviors on a kind of scale-free networks with identical degree sequence," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Hong & Zhang, Geng-shun & Wang, Shi-hao & Li, Juan & Wang, Zhen, 2019. "Q-learning boosts the evolution of cooperation in structured population by involving extortion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Li, HuXiong & X, Fei-Wang, 2022. "Uneven Resources network promotes cooperation in the prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Huang, Yi Jie & Deng, Zheng Hong & Song, Qun & Wu, Tao & Deng, Zhi Long & Gao, Ming yu, 2019. "The evolution of cooperation in multi-games with aspiration-driven updating rule," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 313-317.
    3. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Christopher Lee & Marc Harper & Dashiell Fryer, 2015. "The Art of War: Beyond Memory-one Strategies in Population Games," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-16, March.
    6. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    7. Wang, Qiuling & Du, Chunpeng, 2019. "Impact of expansion of priority range on cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 77-80.
    8. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Christian Hilbe & Martin A Nowak & Arne Traulsen, 2013. "Adaptive Dynamics of Extortion and Compliance," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    11. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    12. Li, Zhibin & Jia, Danyang & Guo, Hao & Geng, Yini & Shen, Chen & Wang, Zhen & Li, Xuelong, 2019. "The effect of multigame on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 162-167.
    13. Sarkar, Bijan, 2018. "Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 319-334.
    14. Zhang, Xiaoyang & Chen, Tong & Chen, Qiao & Li, Xueya, 2020. "Will you cooperate in case the payoff can be guaranteed?," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Han, Ying & Song, Zhao & Sun, Jialong & Ma, Jiezhong & Guo, Yangming & Zhu, Peican, 2020. "Investing the effect of age and cooperation in spatial multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    16. Zheng, Lei & Li, Youqi & Zhou, Jingsai & Li, Yumeng, 2022. "The effect of celebrity on the evolution of fairness in the ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    17. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    18. El-Seidy, Essam & Soliman, Karim.M., 2016. "Iterated symmetric three-player prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 117-127.
    19. Riccardo Pansini & Marco Campennì & Lei Shi, 2020. "Segregating socioeconomic classes leads to an unequal redistribution of wealth," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-10, December.
    20. Guo, Tian & Du, Chunpeng & Shi, Lei, 2024. "Evolution of cooperation on interdependent networks: The impact of asymmetric punishment," Applied Mathematics and Computation, Elsevier, vol. 463(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:263-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.