IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v107y2018icp135-142.html
   My bibliography  Save this article

Multiple peaks patterns of epidemic spreading in multi-layer networks

Author

Listed:
  • Zheng, Muhua
  • Wang, Wei
  • Tang, Ming
  • Zhou, Jie
  • Boccaletti, S.
  • Liu, Zonghua

Abstract

The study of epidemic spreading on populations of networked individuals has seen recently a great deal of significant progresses. A common point in many of past studies is, however, that there is only one peak of infected density in each single epidemic spreading episode. At variance, real data from different cities over the world suggest that, besides a major single peak trait of infected density, a finite probability exists for a pattern made of two (or multiple) peaks. We show that such a latter feature is distinctive of a multilayered network of interactions, and reveal that a two peaks pattern may emerge from different time delays at which the epidemic spreads in between the two layers. Further, we show that the essential ingredient is a weak coupling condition between the layers themselves, while different degree distributions in the two layers are also helpful. Moreover, an edge-based theory is developed which fully explains all numerical results. Our findings may therefore be of significance for protecting secondary disasters of epidemics, which are definitely undesired in real life.

Suggested Citation

  • Zheng, Muhua & Wang, Wei & Tang, Ming & Zhou, Jie & Boccaletti, S. & Liu, Zonghua, 2018. "Multiple peaks patterns of epidemic spreading in multi-layer networks," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 135-142.
  • Handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:135-142
    DOI: 10.1016/j.chaos.2017.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel C Miller, 2014. "Epidemics on Networks with Large Initial Conditions or Changing Structure," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    2. Erik M Volz & Joel C Miller & Alison Galvani & Lauren Ancel Meyers, 2011. "Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ningbo & Yang, Qiwen & Zhu, Xuzhen, 2022. "The impact of social resource allocation on epidemic transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    2. Yang, Zheng & Wu, Jiao & He, Jiaxu & Xu, Kesheng & Zheng, Muhua, 2023. "Asymmetric inter-layer interactions induce a double transition of information spreading," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Wang, Jun & Cai, Shimin & Wang, Wei & Zhou, Tao, 2023. "Link cooperation effect of cooperative epidemics on complex networks," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    5. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    6. Huang, Yubo & Dong, Hongli & Zhang, Weidong & Lu, Junguo, 2019. "Stability analysis of nonlinear oscillator networks based on the mechanism of cascading failures," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 5-15.
    7. Huang, Qi-An & Zhao, Jun-Chan & Wu, Xiao-Qun, 2022. "Financial risk propagation between Chinese and American stock markets based on multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    2. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    3. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    4. Yang, Qian & Huo, Hai-Feng & Xiang, Hong, 2023. "Analysis of an edge-based SEIR epidemic model with sexual and non-sexual transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Li, Shuping & Jin, Zhen, 2015. "Dynamic modeling and analysis of sexually transmitted diseases on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 192-201.
    6. Yang, Zheng & Wu, Jiao & He, Jiaxu & Xu, Kesheng & Zheng, Muhua, 2023. "Asymmetric inter-layer interactions induce a double transition of information spreading," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Michele Bellingeri & Daniele Bevacqua & Francesco Scotognella & Davide Cassi, 2024. "The Critical Role of Networks to Describe Disease Spreading Dynamics in Social Systems: A Perspective," Mathematics, MDPI, vol. 12(6), pages 1-11, March.
    8. Audrey McCombs & Claus Kadelka, 2020. "A model-based evaluation of the efficacy of COVID-19 social distancing, testing and hospital triage policies," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:135-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.