IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp68-76.html
   My bibliography  Save this article

A novel approach to approximate fractional derivative with uncertain conditions

Author

Listed:
  • Ahmadian, A.
  • Salahshour, S.
  • Ali-Akbari, M.
  • Ismail, F.
  • Baleanu, D.

Abstract

This paper focuses on providing a new scheme to find the fuzzy approximate solution of fractional differential equations (FDEs) under uncertainty. The Caputo-type derivative base on the generalized Hukuhara differentiability is approximated by a linearization formula to reduce the corresponding uncertain FDE to an ODE under fuzzy concept. This new approach may positively affect on the computational cost and easily apply for the other types of uncertain fractional-order differential equation. The performed numerical simulations verify the proficiency of the presented scheme.

Suggested Citation

  • Ahmadian, A. & Salahshour, S. & Ali-Akbari, M. & Ismail, F. & Baleanu, D., 2017. "A novel approach to approximate fractional derivative with uncertain conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 68-76.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:68-76
    DOI: 10.1016/j.chaos.2017.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chalco-Cano, Y. & Román-Flores, H., 2008. "On new solutions of fuzzy differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 112-119.
    2. Dumitru Baleanu & Octavian G. Mustafa & Ravi P. Agarwal, 2010. "Asymptotically Linear Solutions for Some Linear Fractional Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2010, pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Lingdong & Chen, Yonghong, 2022. "Comments on “a novel approach to approximate fractional derivative with uncertain conditions”," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Fu, Chao & Zheng, Zhaoli & Zhu, Weidong & Lu, Kuan & Yang, Yongfeng, 2022. "Non-intrusive frequency response analysis of nonlinear systems with interval uncertainty: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. M. Bishehniasar & S. Salahshour & A. Ahmadian & F. Ismail & D. Baleanu, 2017. "An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    4. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    2. Thanh-Lam Nguyen, 2017. "Methods in Ranking Fuzzy Numbers: A Unified Index and Comparative Reviews," Complexity, Hindawi, vol. 2017, pages 1-13, July.
    3. Eman Hussain & Ayad Ali, 2013. "Homotopy Analysis Method for Solving Fuzzy Integro-Differential Equations," Modern Applied Science, Canadian Center of Science and Education, vol. 7(3), pages 1-15, March.
    4. Nguyen Dinh Phu, 2016. "On Nonlocal Initial Problems for Fuzzy Differential Equations and Environmental Pollution Problems," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 2(8), pages 77-92, 08-2016.
    5. Ho Vu, 2017. "Random Fuzzy Differential Equations with Impulses," Complexity, Hindawi, vol. 2017, pages 1-11, June.
    6. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Harb, Ahmad M. & Smadi, Issam A., 2009. "Tracking control of DC motors via mimo nonlinear fuzzy control," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 702-710.
    8. Hoang Viet Long & Haifa Bin Jebreen & Y. Chalco-Cano, 2020. "A New Continuous-Discrete Fuzzy Model and Its Application in Finance," Mathematics, MDPI, vol. 8(10), pages 1-15, October.
    9. Animesh Mahata & Sankar Prasad Mondal & Ali Ahmadian & Fudiah Ismail & Shariful Alam & Soheil Salahshour, 2018. "Different Solution Strategies for Solving Epidemic Model in Imprecise Environment," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    10. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. U. M. Pirzada & V. D. Pathak, 2013. "Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 867-881, March.
    12. Sankar Prasad Mondal & Tapan Kumar Roy, 2017. "Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 766-798, December.
    13. Luciano Stefanini & Barnabas Bede, 2008. "Generalized Hukuhara Differentiability of Interval-valued Functions and Interval Differential Equations," Working Papers 0803, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2008.
    14. Rao, T.D. & Chakraverty, S., 2021. "Forward and inverse techniques for fuzzy fractional systems applied to radon transport in soil chambers," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    16. Nadjafikhah, M. & Bakhshandeh-Chamazkoti, R., 2009. "Fuzzy differential invariant (FDI)," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1677-1683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:68-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.