IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp305-318.html
   My bibliography  Save this article

Extending the deterministic Riemann–Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations

Author

Listed:
  • Burgos, C.
  • Cortés, J.-C.
  • Villafuerte, L.
  • Villanueva, R.-J.

Abstract

This paper extends both the deterministic fractional Riemann–Liouville integral and the Caputo fractional derivative to the random framework using the mean square random calculus. Characterizations and sufficient conditions to guarantee the existence of both fractional random operators are given. Assuming mild conditions on the random input parameters (initial condition, forcing term and diffusion coefficient), the solution of the general random fractional linear differential equation, whose fractional order of the derivative is α ∈ [0, 1], is constructed. The approach is based on a mean square chain rule, recently established, together with the random Fröbenius method. Closed formulae to construct reliable approximations for the mean and the covariance of the solution stochastic process are also given. Several examples illustrating the theoretical results are included.

Suggested Citation

  • Burgos, C. & Cortés, J.-C. & Villafuerte, L. & Villanueva, R.-J., 2017. "Extending the deterministic Riemann–Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 305-318.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:305-318
    DOI: 10.1016/j.chaos.2017.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
    2. Villafuerte, L., 2023. "Solution processes for second-order linear fractional differential equations with random inhomogeneous parts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 17-48.
    3. Burgos, C. & Cortés, J.-C. & Villafuerte, L. & Villanueva, R.J., 2022. "Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    4. El-Beltagy, Mohamed & Etman, Ahmed & Maged, Sroor, 2022. "Development of a fractional Wiener-Hermite expansion for analyzing the fractional stochastic models," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:305-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.