IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i9p2826-2833.html
   My bibliography  Save this article

Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

Author

Listed:
  • Man, Yi
  • Yang, Hongxing
  • Wang, Jinggang

Abstract

The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

Suggested Citation

  • Man, Yi & Yang, Hongxing & Wang, Jinggang, 2010. "Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2826-2833, September.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2826-2833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00176-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2826-2833. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.