IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v59y1998i4p261-271.html
   My bibliography  Save this article

Polymer-electrolyte water electrolysis

Author

Listed:
  • Kato, Moritaka
  • Maezawa, Shouji
  • Sato, Kouichi
  • Oguro, Keisuke

Abstract

The electricity for the electrolyzer is supplied by a variable electricity supply unit that simulates actual outputs of both series and parallel combinations of solar cells exposed to various solar intensities. An amorphous-silicon solar cell is used as a sensor for the unit The operation was continued for more than 600Â days without trouble. The case of direct connection of the solar cell and polymer electrolyte (PE) water electrolyzer is simulated: the test results show that more than 95% of the peak electricity power of the solar battery can be utilized for the electrolyzer over various solar radiation conditions.

Suggested Citation

  • Kato, Moritaka & Maezawa, Shouji & Sato, Kouichi & Oguro, Keisuke, 1998. "Polymer-electrolyte water electrolysis," Applied Energy, Elsevier, vol. 59(4), pages 261-271, April.
  • Handle: RePEc:eee:appene:v:59:y:1998:i:4:p:261-271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(98)00014-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaya, Mehmet Fatih & Demir, Nesrin & Rees, Neil V. & El-Kharouf, Ahmad, 2020. "Improving PEM water electrolyser’s performance by magnetic field application," Applied Energy, Elsevier, vol. 264(C).
    2. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    3. Siracusano, Stefania & Baglio, Vincenzo & Van Dijk, Nicholas & Merlo, Luca & Aricò, Antonino Salvatore, 2017. "Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer," Applied Energy, Elsevier, vol. 192(C), pages 477-489.
    4. Choi, Bokkyu & Panthi, Dhruba & Nakoji, Masateru & Tsutsumi, Kaduo & Tsutsumi, Atsushi, 2017. "Design and performance evaluation of a novel 1kW-class hydrogen production/power generation system," Applied Energy, Elsevier, vol. 194(C), pages 296-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:59:y:1998:i:4:p:261-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.