IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v403y2026ipas0306261925017647.html

Uncovering drivers of EU carbon futures with Bayesian networks

Author

Listed:
  • Maciejowski, Jan
  • Leonelli, Manuele

Abstract

The European Union Emissions Trading System (EU ETS) is a key policy tool for reducing greenhouse gas emissions and advancing toward a net-zero economy. Under this scheme, tradeable carbon credits, European Union Allowances (EUAs), are issued to large emitters, who can buy and sell them on regulated markets. We investigate the influence of financial, economic, and energy-related factors on EUA futures prices using discrete and dynamic Bayesian networks to model both contemporaneous and time-lagged dependencies. The analysis is based on daily data spanning the third and fourth ETS trading phases (2013–2025), incorporating a wide range of indicators including energy commodities, equity indices, exchange rates, and bond markets. Results reveal that EUA pricing is most influenced by energy commodities, especially coal and oil futures, and by the performance of the European energy sector. Broader market sentiment, captured through stock indices and volatility measures, affects EUA prices indirectly via changes in energy demand. The dynamic model confirms a modest next-day predictive influence from oil markets, while most other effects remain contemporaneous. These insights offer regulators, institutional investors, and firms subject to ETS compliance a clearer understanding of the interconnected forces shaping the carbon market, supporting more effective hedging, investment strategies, and policy design.

Suggested Citation

  • Maciejowski, Jan & Leonelli, Manuele, 2026. "Uncovering drivers of EU carbon futures with Bayesian networks," Applied Energy, Elsevier, vol. 403(PA).
  • Handle: RePEc:eee:appene:v:403:y:2026:i:pa:s0306261925017647
    DOI: 10.1016/j.apenergy.2025.127034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925017647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.127034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:403:y:2026:i:pa:s0306261925017647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.