Author
Listed:
- Giorcelli, Filippo
- Cabrera, Pedro
- Paduano, Bruno
- Sirigu, Sergej Antonello
- Mattiazzo, Giuliana
Abstract
The integration of wave energy into power systems is often hindered by a mismatch between device-level performance and system-level needs. Conventional early-stage Wave Energy Converters (WECs) design frameworks, typically guided by levelised cost of energy minimisation, overlook systemic benefits such as aligning renewable production with the system’s demand. This paper proposes a co-design framework that simultaneously optimises WEC design and the renewable energy mix, ensuring that the selected design performs optimally within the overall system while embedding the system’s constraints and performance targets into early-stage WEC design. The approach is demonstrated for the Pendulum WEC (PeWEC) within La Gomera’s isolated grid, in the Canary archipelago, a relevant testbed for microgrid decarbonisation. A multi-objective genetic algorithm couples the PeWEC numerical model with the EnergyPLAN simulation tool to perform hourly-based annual simulations of the whole energy system. The framework identifies Pareto-optimal solutions that reduce CO2 emissions and curtailment, reaching up to 50 % CO2 reduction and 90 % renewable energy sources (RES) share. Results show that optimal devices are not those with maximum stand-alone productivity but those providing power profiles that stabilise the grid and improve RES integration. The methodology enables a comprehensive assessment of wave energy value by embedding system-level constraints directly into the design process and provides practical evidence of how wave energy can support the decarbonisation of isolated grids. The approach is generalisable to other remote, hybrid, or high-RES systems and RES technologies.
Suggested Citation
Giorcelli, Filippo & Cabrera, Pedro & Paduano, Bruno & Sirigu, Sergej Antonello & Mattiazzo, Giuliana, 2025.
"Energy system co-design approach for WECs optimisation: the pendulum wave energy converter case study,"
Applied Energy, Elsevier, vol. 402(PA).
Handle:
RePEc:eee:appene:v:402:y:2025:i:pa:s0306261925015764
DOI: 10.1016/j.apenergy.2025.126846
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:402:y:2025:i:pa:s0306261925015764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.