IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v401y2025ipcs0306261925015041.html

A stable, reliable and interpretable diffusion model for HVAC FDD with data unavailability

Author

Listed:
  • Yan, Ke
  • Bi, Jian
  • Wang, Hua
  • Gao, Yuan
  • Afshari, Afshin

Abstract

Data-driven fault detection and diagnosis (FDD) methods are emerging and attractive techniques for smart energy management in buildings, including the energy management in heating, ventilation, and air conditioning (HVAC) sub-systems. However, the real-world deployment of FDD in HVAC is hindered by data unavailability scenarios. In the past few years, various data augmentation methods, such as the generative adversarial network (GAN), have been proposed to address the abovementioned problem. However, these data augmentation methods suffer from stability, reliability, and interpretability issues. This paper proposes an interpretable ensemble learning-based diffusion model (IELDM) for HVAC systems, generating stable, reliable synthetic datasets to address the data unavailability issue. A split-gain-based method is introduced in IELDM to enhance the interpretability of the overall machine learning framework. Experimental results show that IELDM stably boosts FDD accuracy under extremely limited fault data, with improvements of up to 11.2 %, 13.2 %, and 12.08 % across three HVAC systems, clearly outperforming current state-of-the-art methods. By systematically overcoming the challenges of instability, unreliability, and lack of interpretability in current generative models, this work offers a robust solution to close the application gap of HVAC FDD in practical building energy systems.

Suggested Citation

  • Yan, Ke & Bi, Jian & Wang, Hua & Gao, Yuan & Afshari, Afshin, 2025. "A stable, reliable and interpretable diffusion model for HVAC FDD with data unavailability," Applied Energy, Elsevier, vol. 401(PC).
  • Handle: RePEc:eee:appene:v:401:y:2025:i:pc:s0306261925015041
    DOI: 10.1016/j.apenergy.2025.126774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925015041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:401:y:2025:i:pc:s0306261925015041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.