IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v401y2025ipbs0306261925014953.html

Large-scale analysis of photovoltaic, photovoltaic-thermal, and solar thermal systems in high-density urban environments

Author

Listed:
  • Kazemian, Arash
  • Xiang, Changying

Abstract

Urban solar energy deployment in high-density environments is often limited by rooftop availability, building height, and shading. This study presents a robust, data-driven framework integrating high-resolution Geographic Information System data, 3D building models, and detailed urban morphology to evaluate the potential of various solar technologies, including standard photovoltaic systems, photovoltaic-thermal (PVT) systems (e.g., using water, air, or refrigerant as heat transfer media), and solar thermal systems (e.g., flat-plate or evacuated tube collectors with water or air). Using Hong Kong as a case study, the analysis highlights the impact of urban geometry, showing that incorporating shading reduces rooftop solar radiation by 31 %. Among the technologies assessed, photovoltaic-thermal systems demonstrate the highest combined energy yield, generating approximately 15.99 TWh per year (electricity and heat) from 40 % rooftop utilization. Of this, electricity accounts for 4.0 TWh/year—about 8.9 % of Hong Kong's total electricity consumption (44.8 TWh in 2022), which comprises 33 % of its final energy use. In the residential sector, cooling and hot water each account for 25–26 % of energy demand, emphasizing the value of combined thermal and electrical outputs. Thermal results represent theoretical maximums, as building-specific thermal demands were not modelled. This deployment could offset up to 30.8% of current energy imports, lower NOₓ emissions by 44.3%, and decrease smog-forming pollutants by 8.6%. The proposed framework offers a scalable, transferable approach to urban energy planning, enabling cities worldwide to harness rooftop solar energy more effectively for sustainability and climate resilience.

Suggested Citation

  • Kazemian, Arash & Xiang, Changying, 2025. "Large-scale analysis of photovoltaic, photovoltaic-thermal, and solar thermal systems in high-density urban environments," Applied Energy, Elsevier, vol. 401(PB).
  • Handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925014953
    DOI: 10.1016/j.apenergy.2025.126765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925014953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925014953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.