IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v401y2025ipbs0306261925014436.html

Do smart charging and vehicle-to-grid strengthen or strain power grids with rising EV adoption? Insights from a Swedish residential network

Author

Listed:
  • Huang, Pei
  • Sandström, Maria

Abstract

The rapid growth of electric vehicles (EVs) is placing new demands on residential distribution networks. Smart charging and Vehicle-to-Grid (V2G) technologies offer potential solutions for mitigating the large peak load and enhancing the grid hosting capacity (HC), yet their effectiveness across varying EV penetration levels remains underexplored. Therefore, this study evaluates how EV penetration levels affect the effectiveness of these two technologies. Furthermore, to help improve the grid performances, this study also pioneeringly proposes two hypothetical pricing settings—diverse electricity buying prices and reduced electricity selling prices—and evaluates their performances by comparing with existing price settings. Using real-world network and EV charging data from Sweden, we assess peak load and HC under different scenarios of power flow direction, charging controls, and electricity prices strategies across eight EV penetration levels. Results reveal that coordinated charging, especially with V2G, more effectively reduces peak loads compared to individual controls. However, V2G, if not regulated well, can increase peak loads at high EV penetration levels. Diversified electricity buying prices help lower aggregated peak loads but are less effective in enhancing local HC due to peak load shifting rather than peak load reduction. Additionally, high electricity selling prices benefit at low EV penetration but become less effective as penetration grows. The findings suggest that electricity pricing strategies and charging controls should adapt dynamically to the level of EV penetration. These insights provide critical guidance to policymakers, distribution system operators, and aggregators in designing adaptive pricing and control strategies to integrate EVs without overburdening the grid.

Suggested Citation

  • Huang, Pei & Sandström, Maria, 2025. "Do smart charging and vehicle-to-grid strengthen or strain power grids with rising EV adoption? Insights from a Swedish residential network," Applied Energy, Elsevier, vol. 401(PB).
  • Handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925014436
    DOI: 10.1016/j.apenergy.2025.126713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925014436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925014436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.