IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v401y2025ipbs0306261925013534.html

Climate-driven compounding effects and historical trends in renewable electricity droughts in Europe

Author

Listed:
  • Meng, Yu
  • Schmidt, Johannes
  • Zscheischler, Jakob
  • Bevacqua, Emanuele

Abstract

In the interconnected European power system, renewable electricity droughts (REDs)—periods of unmet demand by renewables—may be triggered by weather-driven compounding effects of high demand and low generation from wind, solar, and/or run-of-river hydropower, particularly when simultaneous REDs compound across multiple regions. Yet, our understanding of such compounding effects and historical trends in REDs, remains limited. We study REDs using weekly electricity generation and demand from 1941 to 2023 derived via the PyPSA-Eur framework, focusing on the season most affected by REDs and, to isolate climate-driven impacts, assuming fixed present-day installed generation capacities. Across nine European macro-regions, each comprising highly interconnected small-scale areas, REDs are mainly driven by wind generation and demand, with prominent compounding effects in central Europe, Italy, and across the UK and Ireland. Wind-demand correlations enhance REDs in central and northern Europe but weaken them in the south. Furthermore, macro-regional REDs primarily occur due to simultaneous REDs in small-scale areas. In an increasingly interconnected continental power system, we find that correlations between residual loads of macro-regions increase the probability of simultaneous macro-regional REDs, ultimately intensifying Europe-wide REDs by 40 % on average compared to a scenario without correlations. Finally, we assess weather-driven trends in REDs, finding that increasing temperatures lowered winter heating demand and thus reduced RED frequency, while changes in correlations between demand and generation sources, along with between residual loads across macro-regions, amplified Europe-wide RED risk. This research underscores the importance of considering compound effects between demand and generation across regions, along with long-term climate change, to optimize power systems.

Suggested Citation

  • Meng, Yu & Schmidt, Johannes & Zscheischler, Jakob & Bevacqua, Emanuele, 2025. "Climate-driven compounding effects and historical trends in renewable electricity droughts in Europe," Applied Energy, Elsevier, vol. 401(PB).
  • Handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925013534
    DOI: 10.1016/j.apenergy.2025.126623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925013534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:401:y:2025:i:pb:s0306261925013534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.