IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v399y2025ics0306261925012000.html
   My bibliography  Save this article

Radiation regulation of silicon photovoltaic modules for effective thermal management: A potential analysis

Author

Listed:
  • Li, Tao
  • Ma, Tao
  • Yu, Kun
  • Peng, Jinqing

Abstract

Enhancing the radiative cooling capacity or reflecting all the sub-bandgap photons to realize effective thermal management has elicited great interest. Numerous related investigations of the enhancement have been covered in literature, while the photoelectric conversion along with the working conditions still exhibit significant variability, and the mechanisms through enhancing heat dissipation or suppressing heat generation are entirely distinct. Herein, a comprehensive potential analysis is conducted on the radiation regulation technologies. Building upon our simulation framework, a modified thermal network with refined fifteen nodes that cover the entire structure of the PV module is integrated, enabling precise determination of the temperature trend. Accordingly, the basic properties of the PV module and the energy distribution are calculated, along with the power change of heat generation and dissipation of the module. The optimization mechanisms behind the temperature decline are revealed, and the practical temperature reductions under different working conditions are determined for reference. The results reveal that, for a silicon PV module, the radiation regulation scheme through rejecting all the non-contribution solar photons can eliminate below bandgap loss and suppress parasitic absorption and is much more efficient than enhancing its radiative cooling capacity. The average temperature reductions can reach up to 2.86 °C, 3.75 °C, and 4.60 °C respectively by rejecting all non-contribution photons compared to the original module with the incoming solar irradiance intensity of 600, 800, and 1000 W/m2, while the values decrease to 0.68 °C, 0.77 °C and 0.86 °C if only the emissivity is improved to unity, and further drop to 0.64 °C, 0.70 °C and 0.78 °C if the sub-bandgap reflection capacity has been improved. Additionally, all the performance enhancements will be diminished with the wind speed, and enhancing emissivity is more suitable to be applied in hot environment, whereas reflecting useless photons prefers cold.

Suggested Citation

  • Li, Tao & Ma, Tao & Yu, Kun & Peng, Jinqing, 2025. "Radiation regulation of silicon photovoltaic modules for effective thermal management: A potential analysis," Applied Energy, Elsevier, vol. 399(C).
  • Handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925012000
    DOI: 10.1016/j.apenergy.2025.126470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925012000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925012000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.