Author
Listed:
- Khabbazi, Arash J.
- Pergantis, Elias N.
- Reyes Premer, Levi D.
- Papageorgiou, Panagiotis
- Lee, Alex H.
- Braun, James E.
- Henze, Gregor P.
- Kircher, Kevin J.
Abstract
A large body of simulation research suggests that model predictive control (MPC) and reinforcement learning (RL) for heating, ventilation, and air-conditioning (HVAC) in residential and commercial buildings could reduce energy costs, pollutant emissions, and strain on power grids. Despite this potential, neither MPC nor RL has seen widespread industry adoption. Field demonstrations could accelerate MPC and RL adoption by providing real-world data that support the business case for deployment. Here we review 24 papers that document field demonstrations of MPC and RL in residential buildings and 80 in commercial buildings. After presenting demographic information – such as experiment scopes, locations, and durations – this paper analyzes experiment protocols and their influence on performance estimates. We find that 71 % of the reviewed field demonstrations use experiment protocols that may lead to unreliable performance estimates. Over the remaining 29 % that we view as reliable, the weighted-average cost savings, weighted by experiment duration, are 16 % in residential buildings and 13 % in commercial buildings. While these savings are potentially attractive, making the business case for MPC and RL also requires characterizing the costs of deployment, operation, and maintenance. Only 13 of the 104 reviewed papers report these costs or discuss related challenges. Based on these observations, we recommend directions for future field research, including: Improving experiment protocols; reporting deployment, operation, and maintenance costs; designing algorithms and instrumentation to reduce these costs; controlling HVAC equipment alongside other distributed energy resources; and pursuing emerging objectives such as peak shaving, arbitraging wholesale energy prices, and providing power grid reliability services.
Suggested Citation
Khabbazi, Arash J. & Pergantis, Elias N. & Reyes Premer, Levi D. & Papageorgiou, Panagiotis & Lee, Alex H. & Braun, James E. & Henze, Gregor P. & Kircher, Kevin J., 2025.
"Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial HVAC: A review,"
Applied Energy, Elsevier, vol. 399(C).
Handle:
RePEc:eee:appene:v:399:y:2025:i:c:s0306261925011894
DOI: 10.1016/j.apenergy.2025.126459
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925011894. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.