IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v399y2025ics0306261925010840.html
   My bibliography  Save this article

The impact of temporal clustering on long-term energy system models

Author

Listed:
  • Catania, Matteo
  • Muliere, Giuseppe
  • Fattori, Fabrizio
  • Colbertaldo, Paolo

Abstract

The field of energy system modelling is experiencing significant development, driven by the urgent need to redesign the national energy systems to achieve carbon neutrality. A growing interest regards long-term energy system models, which enable tracking the pathway and not only the final need for installations. The increase in complexity may easily lead them to face computational limits. Therefore, modelling approaches are required that cluster data to reduce the size of the problem while limiting errors and inaccuracies. This article studies the impact of temporal clustering on the performances of a sector-integrated energy system model, considering the double-layer clustering scheme operating on two distinct temporal scales: intra-year and inter-year. The former is addressed through typical-day clustering (k-means and k-medoids), while the latter introduces multi-year gaps between representative years. This methodology is implemented in the open-source framework oemof, which is customized to the dual clustering approach. The study addresses a sector-integrated energy system, built on the Italian structure, with a multi-vector and multi-sector perspective along the 2020–2050 horizon. The impact is investigated by comparing multiple options with varying number of typical days and multi-year gap, comparing each configuration with a benchmark without clustering. The approach yields coherent representations of the energy system evolution, simultaneously reducing the memory usage down to 4 %. The outcomes show the benefits of balancing the number of representative years with the number of representative days, suggesting that such a trade-off leads to significant computational advantages. Although literature shows that time-series reduction is case-dependent, the double-layer clustering scheme appears promising for application on even more complex models, where a full-hour resolution would be computationally intractable.

Suggested Citation

  • Catania, Matteo & Muliere, Giuseppe & Fattori, Fabrizio & Colbertaldo, Paolo, 2025. "The impact of temporal clustering on long-term energy system models," Applied Energy, Elsevier, vol. 399(C).
  • Handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925010840
    DOI: 10.1016/j.apenergy.2025.126354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925010840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.