IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011717.html

Synergistic pathways of water quality improvement and GHG emission reduction in wastewater sector on the Qinghai-Tibet Plateau

Author

Listed:
  • Huang, Yao
  • Chen, Bin
  • Fang, Delin

Abstract

Greenhouse gas (GHG) emissions from the wastewater sector in the Qinghai-Tibet Plateau (QTP) have been increasing, while improving of water quality in wastewater treatment plants (WWTPs) remains urgent, making coordinated development a crucial objective. In this paper, we conducted an inventory analysis of GHG emissions in the QTP wastewater sector from 2014 to 2018. Additionally, we evaluated changes in water quality and GHG emissions under optimized scenarios involving advanced wastewater treatment technologies and enhanced sludge resource utilization by 2035. The results show that total wastewater GHG emissions in the QTP increased from 0.25 Mt. CO2e to 0.45 Mt. CO2e between 2014 and 2018. However, with an extensive and integrated application of technologies tailored to plateau conditions in wastewater treatment and sludge disposal, the synergistic development of improving water quality and slowing GHG emissions growth is achievable. By 2035, under the scenario of optimizing wastewater treatment processes, the proportion of WWTPs meeting China's Class 1A discharge standard is projected to increase by 57 %, while GHG emissions could be reduced by 35 %, relative to the business-as-usual (BAU) scenario. Furthermore, under the scenario of integrating advanced treatment processes and sludge resource utilization, GHG emissions is expected to be 48 % of that in the BAU scenario by 2035. This study provides insight for the wastewater sector in plateau regions to improve water quality and reduce GHG emissions.

Suggested Citation

  • Huang, Yao & Chen, Bin & Fang, Delin, 2025. "Synergistic pathways of water quality improvement and GHG emission reduction in wastewater sector on the Qinghai-Tibet Plateau," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011717
    DOI: 10.1016/j.apenergy.2025.126441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    2. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    3. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    4. Jin Xu & Peifang Wang & Yi Li & Lihua Niu & Zhen Xing, 2019. "Shifts in the Microbial Community of Activated Sludge with Different COD/N Ratios or Dissolved Oxygen Levels in Tibet, China," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    5. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    6. Yan, Guoxin & Kenway, Steven J. & Lam, Ka Leung & Lant, Paul A., 2024. "Water-energy trajectories for urban water and wastewater reveal the impact of city strategies," Applied Energy, Elsevier, vol. 366(C).
    7. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Chenyang & Huang, Runyao & Yu, Jie & Zhang, Shike & Jin, Sitian & Xu, Qianrong & Zhang, Jing & Ai, Zisheng & Mąkinia, Jacek & Wang, Hongtao, 2025. "Quantifying the mitigation potential of energy and chemical consumption for a full-scale wastewater treatment plant with deep learning methods," Applied Energy, Elsevier, vol. 394(C).
    2. B. M. Ruhul Amin & Rakibuzzaman Shah & Suryani Lim & Tanveer Choudhury & Andrew Barton, 2025. "Characterization of Energy Profile and Load Flexibility in Regional Water Utilities for Cost Reduction and Sustainable Development," Sustainability, MDPI, vol. 17(8), pages 1-25, April.
    3. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    4. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    5. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    7. Leyuan Zhang & Yucheng Zhang & Yang Liu & Sibo Wang & Calvin K. Lee & Yu Huang & Xiangfeng Duan, 2024. "High power density redox-mediated Shewanella microbial flow fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    9. Bin He & Xin Yuan & Shusheng Qian & Bing Li, 2023. "Product low‐carbon design, manufacturing, logistics, and recycling: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    10. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    11. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    12. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    14. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    16. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    17. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    18. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    19. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    20. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.