IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics030626192501147x.html

Interpretable short-term electricity load forecasting considering small sample heatwaves

Author

Listed:
  • Xiao, Yaqiu
  • Hu, Xinle
  • Lin, Yingshan
  • Lu, Yang
  • Jing, Rui
  • Zhao, Yingru

Abstract

Heatwaves have become more frequent, causing significant fluctuations in electricity load and making it difficult for traditional forecasting methods to capture the load variations accurately. Simultaneously, as the power system undergoes digital transformation, the growing complexity of forecasting algorithms makes the internal reasoning processes of models harder to interpret. To address the heatwave and interpretability induced challenges, this study proposes a BiLSTM-based electricity load forecasting method incorporating TimeGAN and a dual attention mechanism. The method first uses TimeGAN to alleviate the imbalance in historical data's distribution of heatwaves samples. Subsequently, a dual attention mechanism, which accounts for both features and time, is integrated into the BiLSTM, enabling the model to more effectively capture the temporal characteristics of the load data and the impact of meteorological factors. Case experiment reveals that the proposed method outperforms traditional models in short-term electricity load forecasting during summer heatwaves. The proposed method achieves superior performance in three key aspects: higher forecasting accuracy with the mean absolute percentage error reductions of 18.03 % and 33.62 % on residential and public service datasets respectively; better generalization ability; and enhanced interpretability. Overall, the proposed approach offers a practical and effective solution for interpretable load forecasting under extreme weather conditions.

Suggested Citation

  • Xiao, Yaqiu & Hu, Xinle & Lin, Yingshan & Lu, Yang & Jing, Rui & Zhao, Yingru, 2025. "Interpretable short-term electricity load forecasting considering small sample heatwaves," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s030626192501147x
    DOI: 10.1016/j.apenergy.2025.126417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192501147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    2. Wang, Zhenyi & Zhang, Hongcai, 2024. "Customer baseline load estimation for virtual power plants in demand response: An attention mechanism-based generative adversarial networks approach," Applied Energy, Elsevier, vol. 357(C).
    3. Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
    4. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    5. Serra, Adrià & Ortiz, Alberto & Cortés, Pau Joan & Canals, Vincent, 2025. "Explainable district heating load forecasting by means of a reservoir computing deep learning architecture," Energy, Elsevier, vol. 318(C).
    6. Peivand, Ali & Azad Farsani, Ehsan & Abdolmohammadi, Hamid Reza, 2024. "Accelerating optimal scheduling prediction in power system: A multi-faceted GAN-assisted prediction framework," Renewable Energy, Elsevier, vol. 230(C).
    7. Tian, Jiarui & Liu, Hui & Gan, Wei & Zhou, Yue & Wang, Ni & Ma, Siyu, 2025. "Short-term electric vehicle charging load forecasting based on TCN-LSTM network with comprehensive similar day identification," Applied Energy, Elsevier, vol. 381(C).
    8. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    9. Wang, Zheng & Peng, Tian & Zhang, Xuedong & Chen, Jialei & Qian, Shijie & Zhang, Chu, 2025. "Enhancing multi-step short-term solar radiation forecasting based on optimized generalized regularized extreme learning machine and multi-scale Gaussian data augmentation technique," Applied Energy, Elsevier, vol. 377(PD).
    10. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    11. Bu, Xiangya & Wu, Qiuwei & Zhou, Bin & Li, Canbing, 2023. "Hybrid short-term load forecasting using CGAN with CNN and semi-supervised regression," Applied Energy, Elsevier, vol. 338(C).
    12. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    13. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    14. Li, Feng & Liu, Shiheng & Wang, Tianhu & Liu, Ranran, 2024. "Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-Attention network forecasts," Energy, Elsevier, vol. 309(C).
    15. Fan, Yukun & Liu, Weifeng & Zhu, Feilin & Wang, Sen & Yue, Hao & Zeng, Yurou & Xu, Bin & Zhong, Ping-an, 2024. "Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties," Applied Energy, Elsevier, vol. 372(C).
    16. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2022. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models," Energies, MDPI, vol. 15(5), pages 1-20, March.
    17. Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
    18. Jiang, Meiqin & Che, Jinxing & Li, Shuying & Hu, Kun & Xu, Yifan, 2025. "Incorporating key features from structured and unstructured data for enhanced carbon trading price forecasting with interpretability analysis," Applied Energy, Elsevier, vol. 382(C).
    19. Wang, Jun & Zhang, Xuanyu & Wang, Yonggang & Yang, Song & Wang, Song & Xie, Yipeng & Gong, Jing & Lin, Jiali, 2025. "Power system source-load forecasting based on scene generation in extreme weather," Energy, Elsevier, vol. 330(C).
    20. Li, Chun & Shi, Jiarong, 2025. "A novel CNN-LSTM-based forecasting model for household electricity load by merging mode decomposition, self-attention and autoencoder," Energy, Elsevier, vol. 330(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Haihua & Wang, Peng & He, Gang & Tao, Hai & Tang, Lang & Cai, Guotian, 2025. "Real-time monitoring of daily carbon emissions and electricity generation from fossil fuel power plants using geostationary satellite band data and deep learning techniques," Energy, Elsevier, vol. 334(C).
    2. Wu, Bizhi & Xiao, Jiangwen & Wang, Shanlin & Zhang, Ziyuan & Wen, Renqiang, 2025. "Enhancing short-term net load forecasting with additive neural decomposition and Weibull Attention," Energy, Elsevier, vol. 322(C).
    3. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    4. Wenjie Guo & Jie Liu & Jun Ma & Zheng Lan, 2025. "Short-Term Power Load Forecasting Using Adaptive Mode Decomposition and Improved Least Squares Support Vector Machine," Energies, MDPI, vol. 18(10), pages 1-17, May.
    5. Li, Jierui & Ren, Xiaoying & Zhang, Fei & Li, Jingtao & Liu, Yulei, 2025. "A novel deep learning-based method for theoretical power fitting of photovoltaic generation," Renewable Energy, Elsevier, vol. 250(C).
    6. Zhou, Xinbo & Qi, Li & Pan, Nan & Hou, Ming & Yang, Junwei, 2025. "Optimization method for load aggregation scheduling in industrial parks considering multiple interests and adjustable load classification," Energy, Elsevier, vol. 326(C).
    7. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Long-term price guidance mechanism for integrated energy systems based on gated recurrent unit - vision transformer prediction and fractional-order stochastic dynamic calculus control," Energy, Elsevier, vol. 312(C).
    8. Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
    9. Xun Dou & Yu He, 2025. "A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis," Mathematics, MDPI, vol. 13(7), pages 1-22, March.
    10. Zeng, Huanze & Wu, Binrong & Fang, Haoyu & Lin, Jiacheng, 2025. "Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis," Applied Energy, Elsevier, vol. 392(C).
    11. Sun, Yang & Tian, Zhirui, 2025. "Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble," Applied Energy, Elsevier, vol. 377(PD).
    12. Hu, Jinxue & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Zhao, Xiaoyu & Yuan, Xiaoyang & Zhang, Chenyang, 2025. "A multi-energy load forecasting method based on the Mixture-of-Experts model and dynamic multilevel attention mechanism," Energy, Elsevier, vol. 324(C).
    13. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    14. Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
    15. Tan, Quanwei & Zhu, Jiebei & Xue, Guijun & Xie, Wenju, 2025. "A hybrid heat load forecasting model based on multistage decomposition and dynamic adaptive loss function," Energy, Elsevier, vol. 335(C).
    16. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    17. Mingxiang Li & Tianyi Zhang & Haizhu Yang & Kun Liu, 2024. "Multiple Load Forecasting of Integrated Renewable Energy System Based on TCN-FECAM-Informer," Energies, MDPI, vol. 17(20), pages 1-16, October.
    18. Zhou, Jianing & Cai, Guowei & Wang, Yibo & Liu, Chuang, 2025. "Dual-timescale scheduling approach for power systems with Energy-intensive loads: Wind power accommodation through forecast deviation decomposition and flexible resource coordination," Energy, Elsevier, vol. 332(C).
    19. Chen, Jialei & Zhang, Chu & Li, Xi & He, Rui & Wang, Zheng & Nazir, Muhammad Shahzad & Peng, Tian, 2025. "An integrative approach to enhance load forecasting accuracy in power systems based on multivariate feature selection and selective stacking ensemble modeling," Energy, Elsevier, vol. 326(C).
    20. Xi, Lei & Shi, Yu & Quan, Yue & Liu, Zhihong, 2024. "Research on the multi-area cooperative control method for novel power systems," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s030626192501147x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.