IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011250.html
   My bibliography  Save this article

Evaluating advanced nuclear fission technologies for future decarbonized power grids

Author

Listed:
  • Cano Renteria, Emilio
  • Schwartz, Jacob A.
  • Jenkins, Jesse

Abstract

Advanced nuclear fission, which encompasses various innovative nuclear reactor designs, could contribute to the decarbonization of the United States electricity sector. However, little is known about how cost-competitive these reactors would be compared to other technologies, or about which aspects of their designs offer the most value to a decarbonized power grid. We employ an electricity system optimization model and a case study of a decarbonized U.S. Eastern Interconnection circa 2050 to generate initial indicators of future economic value for advanced reactors and the sensitivity of future value to various design parameters, the availability of competing technologies, and the underlying policy environment. These results can inform long-term cost targets and guide near-term innovation priorities, investments, and reactor design decisions. We find that advanced reactors should cost $5.7–$7.3/W to gain an initial market share (assuming 30 year asset life and 3.5 %–6.5 % real weighted average cost of capital), while those that include thermal storage in their designs can cost up to $6.0/W–$7.7/W (not including cost of storage). Since the marginal value of advanced fission reactors declines as market penetration increases, break-even costs fall ∼32 % at 100 GW of cumulative capacity and ∼51 % at 300 GW. Additionally, policies that provide investment tax credits for nuclear energy create the most favorable environment for advanced nuclear fission. These findings can inform near-term resource allocation decisions by stakeholders, innovators and investors working in the energy technology sector.

Suggested Citation

  • Cano Renteria, Emilio & Schwartz, Jacob A. & Jenkins, Jesse, 2025. "Evaluating advanced nuclear fission technologies for future decarbonized power grids," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011250
    DOI: 10.1016/j.apenergy.2025.126395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.