IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011237.html
   My bibliography  Save this article

CAPER: Dual-level physics-data fusion with modular metamodels for reliable generalization in predictive digital twins

Author

Listed:
  • Zhang, Qingang
  • Long, Wenjun
  • Wang, Ruihang
  • Cao, Zhiwei
  • Wang, Zhaoyang
  • Yan, Yuejun
  • Wen, Yonggang

Abstract

Digital twins enable Artificial Intelligence (AI)-driven decision-making in mission-critical infrastructures such as data centers by leveraging advanced predictive capabilities. However, deploying predictive digital twins in a data center presents significant challenges, particularly in ensuring real-time updates and reliable dynamic predictions. Existing approaches capable of capturing complex system characteristics, ensuring predictive accuracy on unseen datasets, and balancing computational overhead remain lacking. This paper proposes a dual-level physics-data fusion framework that synergistically fuses physics-based and data-driven methods. The framework employs system decomposition and modular metamodeling to reduce sampling requirements and improve complex parameter search efficiency. Experimental validation demonstrates that the Coefficient of Variation of the Root-Mean-Square Error (CV-RMSE) remains below 15 % for most features, outperforming baseline methods where individual feature errors range from 40 % to 100 %. The single-time calibration completes within the typical 15-minute sampling interval in cooling systems, thereby enabling real-time updates. By seamlessly integrating the extrapolation capabilities of physics-based models with the adaptability of Machine Learning (ML), the framework achieves high predictive accuracy in both interpolation and extrapolation tasks. The adaptation process further reduces the Mean Absolute Error (MAE) by up to 93 % compared to the Baseline. Furthermore, the fusion-based system dynamics model effectively simulates multi-stage heat transfer processes, integrating system-level thermodynamic interactions with module-level metamodels. This framework demonstrates significant potential to enhance digital twin applications, optimize data center energy efficiency, and address broader engineering challenges.

Suggested Citation

  • Zhang, Qingang & Long, Wenjun & Wang, Ruihang & Cao, Zhiwei & Wang, Zhaoyang & Yan, Yuejun & Wen, Yonggang, 2025. "CAPER: Dual-level physics-data fusion with modular metamodels for reliable generalization in predictive digital twins," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011237
    DOI: 10.1016/j.apenergy.2025.126393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Song, Houde & Song, Meiqi & Liu, Xiaojing, 2022. "Online autonomous calibration of digital twins using machine learning with application to nuclear power plants," Applied Energy, Elsevier, vol. 326(C).
    2. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    3. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    4. Zhang, Qingang & Zeng, Wei & Lin, Qinjie & Chng, Chin-Boon & Chui, Chee-Kong & Lee, Poh-Seng, 2023. "Deep reinforcement learning towards real-world dynamic thermal management of data centers," Applied Energy, Elsevier, vol. 333(C).
    5. Verdouw, Cor & Tekinerdogan, Bedir & Beulens, Adrie & Wolfert, Sjaak, 2021. "Digital twins in smart farming," Agricultural Systems, Elsevier, vol. 189(C).
    6. Pushan Sharma & Wai Tong Chung & Bassem Akoush & Matthias Ihme, 2023. "A Review of Physics-Informed Machine Learning in Fluid Mechanics," Energies, MDPI, vol. 16(5), pages 1-21, February.
    7. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    8. Fangzheng Xie & Yanxun Xu, 2021. "Bayesian Projected Calibration of Computer Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1965-1982, October.
    9. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    10. Eneyew, Dagimawi D. & Capretz, Miriam A.M. & Bitsuamlak, Girma T., 2024. "Continuous model calibration framework for smart-building digital twin: A generative model-based approach," Applied Energy, Elsevier, vol. 375(C).
    11. Trucano, T.G. & Swiler, L.P. & Igusa, T. & Oberkampf, W.L. & Pilch, M., 2006. "Calibration, validation, and sensitivity analysis: What's what," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1331-1357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    2. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    3. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    4. Zhou, Shiqi & Lin, Meng & Huang, Shilong & Xiao, Kai, 2024. "Open set compound fault recognition method for nuclear power plant based on label mask weighted prototype learning," Applied Energy, Elsevier, vol. 369(C).
    5. Sun, Yang & Fang, Xiangzhong, 2024. "Efficient calibration of computer models with multivariate output," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    6. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.
    7. Si Chen & Daniel Friedrich & Zhibin Yu & James Yu, 2019. "District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration," Energies, MDPI, vol. 12(18), pages 1-19, September.
    8. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    10. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    11. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Xue, Qingwen & Gu, Mei & Yang, Yingxia & Bai, Pengyun & Wang, Zhichao & Jiang, Sihang & Duan, Pengfei, 2025. "Calibration study of uncertainty parameters for nearly-zero energy buildings based on a novel approximate Bayesian approach," Energy, Elsevier, vol. 322(C).
    14. Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
    15. Yang Sun & Xiangzhong Fang, 2025. "Calibration for Computer Models with Time-Varying Parameter," Mathematics, MDPI, vol. 13(18), pages 1-22, September.
    16. Park, Inseok & Grandhi, Ramana V., 2014. "A Bayesian statistical method for quantifying model form uncertainty and two model combination methods," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 46-56.
    17. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    18. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    19. Ivan S. Maksymov, 2023. "Analogue and Physical Reservoir Computing Using Water Waves: Applications in Power Engineering and Beyond," Energies, MDPI, vol. 16(14), pages 1-26, July.
    20. Chen, Hanfei & Lin, ChihChieh & Longtin, Jon P., 2019. "Dynamic modeling and parameter optimization of a free-piston Vuilleumier heat pump with dwell-based motion," Applied Energy, Elsevier, vol. 242(C), pages 741-751.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.