Author
Listed:
- Fan, Zhixuan
- Di, Yanqiang
- Gao, Yafeng
- Zhang, Qiulei
- Jiang, Lina
- Dong, Shiqian
- Chen, Hongbo
- Li, Yuanyang
- Luo, Mingwen
Abstract
Chiller modeling is essential for ensuring efficient chiller operation. The existing chiller models are mostly single-output steady-state models that cannot accurately capture the dynamic behavior of chillers and cannot meet the needs of digital twins. In this work, a multi-output model framework was proposed to facilitate the development of a digital twin chiller. Subsequently, three steady-state and three dynamic chiller models were developed based on a medium-temperature case. The hyperparameters of the six candidate models were optimized. To systematically evaluate model suitability, we introduced two novel metrics: the univariate error, which quantifies prediction accuracy for individual variables, and the model overall error, which aggregates errors across all variables to assess comprehensive performance. A comparative analysis was then conducted to contrast the best steady-state and dynamic models, evaluating their overall error and dynamic responsiveness. The study results show that: The chiller power consumption of all models exhibit the lowest prediction accuracy, followed by evaporator outlet water temperature and condenser outlet water temperature. The support vector regression (SVR) model is the best of the steady state models with model overall error of 10.84 %, and the gate recurrent unit (GRU) model is the best of the steady state models with model overall error of 3.67 %. Notably, the GRU model demonstrates superior accuracy in predicting evaporator outlet temperature(Teo), condenser outlet temperature(Tco) and chiller power consumption(P) and better captured transient fluctuations in these variables during chiller start-up and load changes compared with the SVR model. The findings provide a methodological foundation for developing digital twin models and optimizing intelligent operation/maintenance strategies for chillers.
Suggested Citation
Fan, Zhixuan & Di, Yanqiang & Gao, Yafeng & Zhang, Qiulei & Jiang, Lina & Dong, Shiqian & Chen, Hongbo & Li, Yuanyang & Luo, Mingwen, 2025.
"Multi-output model of medium-temperature chillers for digital twins: A comparative study of steady-state and dynamic modeling approaches,"
Applied Energy, Elsevier, vol. 397(C).
Handle:
RePEc:eee:appene:v:397:y:2025:i:c:s0306261925011274
DOI: 10.1016/j.apenergy.2025.126397
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925011274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.