Author
Listed:
- Ma, Junwei
- Li, Bo
- Omitaomu, Olufemi A.
- Mostafavi, Ali
Abstract
Power outages have become increasingly frequent, intense, and prolonged in the US due to climate change, aging electrical grids, and rising energy demand. However, largely due to the absence of granular spatiotemporal outage data, we lack data-driven evidence and analytics-based metrics to quantify power system vulnerability. This limitation has hindered the ability to effectively evaluate and address vulnerability to power outages in US communities. Here, we collected ∼179 million power outage records at 15-min intervals across 3022 US contiguous counties (96.15 % of the area) from 2014 to 2023. We developed a power system vulnerability assessment framework based on three dimensions (intensity, frequency, and duration) and applied interpretable machine learning models (XGBoost and SHAP) to compute Power System Vulnerability Index (PSVI) at the county level. Our analysis reveals a consistent increase in power system vulnerability across the US counties over the past decade. We identified 318 counties across 45 states as hotspots for high power system vulnerability, particularly in the West Coast (California and Washington), the East Coast (Florida and the Northeast area), the Great Lakes megalopolis (Chicago-Detroit metropolitan areas), and the Gulf of Mexico (Texas). Our heterogeneity analysis indicates that urban counties and those located along regional transmission boundaries tend to exhibit significantly higher vulnerability. Our results highlight the significance of the proposed PSVI for evaluating the vulnerability of communities to power outages. The findings underscore the widespread and pervasive impact of power outages across the country and offer crucial insights to support infrastructure operators, policymakers, and emergency managers in formulating policies and programs aimed at enhancing the resilience of the US power infrastructure.
Suggested Citation
Ma, Junwei & Li, Bo & Omitaomu, Olufemi A. & Mostafavi, Ali, 2025.
"Establishing nationwide power system vulnerability index across US counties using interpretable machine learning,"
Applied Energy, Elsevier, vol. 397(C).
Handle:
RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010906
DOI: 10.1016/j.apenergy.2025.126360
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010906. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.