IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925010724.html

Quantification of electrical system flexibility by local multi-energy systems: Impact of the system design and component interdependencies

Author

Listed:
  • Glücker, Philipp
  • Mhanna, Sleiman
  • Pesch, Thiemo
  • Benigni, Andrea
  • Mancarella, Pierluigi

Abstract

Multi-energy systems (MES) providing electrical flexibility will be essential for low-carbon power grids. With the aim of embedding flexibility provision into the design phase of local MES, the presented framework proposes a quantitative assessment of how the sizing of individual and interdependent components affects technical flexibility. It identifies key components that either enhance or reduce the flexibility of MES. The framework includes a sensitivity analysis that provides valuable technical insights, such as a deeper understanding of limiting factors and interdependencies between components across energy vectors. Moreover, flexibility is quantified over multiple time steps in relation to a predetermined reference schedule, which is particularly important for energy systems that must submit their planned schedule in advance, thus ensuring constant flexibility provision for a specified duration. The adopted case studies, which use a residential building and a local energy community, underpin the capabilities of the proposed framework and its applicability to energy systems with internal network constraints. One of the key findings is that the coupled flexibility from the heat vector significantly increases active power flexibility, i.e., the range of increase and decrease in its active power during operation. This anchors heat pumps as a linchpin coupling component between electricity and heat in MES. Furthermore, the interdependence between the maximum thermal output of the heat pump and the thermal capacity of the hot water storage tank was quantified by a linear threshold relation, beyond which increasing the size of the heat pump does not improve system flexibility.

Suggested Citation

  • Glücker, Philipp & Mhanna, Sleiman & Pesch, Thiemo & Benigni, Andrea & Mancarella, Pierluigi, 2025. "Quantification of electrical system flexibility by local multi-energy systems: Impact of the system design and component interdependencies," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010724
    DOI: 10.1016/j.apenergy.2025.126342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hering, Dominik & Xhonneux, André & Müller, Dirk, 2021. "Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming," Energy, Elsevier, vol. 226(C).
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Cardoso, G. & Stadler, M. & Mashayekh, S. & Hartvigsson, E., 2017. "The impact of ancillary services in optimal DER investment decisions," Energy, Elsevier, vol. 130(C), pages 99-112.
    4. Hui, Hengyu & Bao, Minglei & Ding, Yi & Yan, Jinyue & Song, Yonghua, 2023. "Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization," Applied Energy, Elsevier, vol. 349(C).
    5. Glücker, Philipp & Pesch, Thiemo & Benigni, Andrea, 2024. "Optimal sizing of battery energy storage system for local multi-energy systems: The impact of the thermal vector," Applied Energy, Elsevier, vol. 372(C).
    6. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    7. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    8. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    9. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 278.
    10. Jörn C. Richstein & Seyed Saeed Hosseinioun, 2020. "Industrial Demand Response: How Network Tariffs and Regulation Do (Not) Impact Flexibility Provision in Electricity Markets and Reserves," Discussion Papers of DIW Berlin 1853, DIW Berlin, German Institute for Economic Research.
    11. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    12. Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
    13. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    14. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    15. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    16. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Pio Alessandro Lombardi, 2025. "Technical and Economic Approaches to Design Net-Zero Energy Factories: A Case Study of a German Carpentry Factory," Sustainability, MDPI, vol. 17(17), pages 1-29, September.
    3. Bielefeld, Svenja & Cvetković, Miloš & Ramírez, Andrea, 2025. "The potential for electrifying industrial utility systems in existing chemical plants," Applied Energy, Elsevier, vol. 392(C).
    4. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    5. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Glücker, Philipp & Pesch, Thiemo & Benigni, Andrea, 2024. "Optimal sizing of battery energy storage system for local multi-energy systems: The impact of the thermal vector," Applied Energy, Elsevier, vol. 372(C).
    7. Li, He & Wang, Pengyu & Fang, Debin, 2024. "Differentiated pricing for the retail electricity provider optimizing demand response to renewable energy fluctuations," Energy Economics, Elsevier, vol. 136(C).
    8. Daiya Isogawa & Hiroshi Ohashi & Tokunari Anai, 2024. "The Role of Advance Notice in Shaping Industrial Response to Time-Varying Electricity Prices," CIRJE F-Series CIRJE-F-1226, CIRJE, Faculty of Economics, University of Tokyo.
    9. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    10. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    11. Saebi, Javad & Ghasemi, Abolfazl & Hojjat, Mehrdad, 2022. "Design and implementation of a competitive framework for a day-ahead demand-response program in Iran," Utilities Policy, Elsevier, vol. 77(C).
    12. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    13. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    14. Ranaboldo, M. & Aragüés-Peñalba, M. & Arica, E. & Bade, A. & Bullich-Massagué, E. & Burgio, A. & Caccamo, C. & Caprara, A. & Cimmino, D. & Domenech, B. & Donoso, I. & Fragapane, G. & González-Font-de-, 2024. "A comprehensive overview of industrial demand response status in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    15. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Murphy, Michael D., 2025. "The hidden cost of using time series aggregation for modeling low-carbon industrial energy systems: An investors’ perspective," Energy, Elsevier, vol. 318(C).
    16. Samir Jeddi & Amelie Sitzmann, 2021. "Network tariffs under different pricing schemes in a dynamically consistent framework," EWI Working Papers 2021-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    18. Hennig, Roman J. & de Vries, Laurens J. & Tindemans, Simon H., 2023. "Congestion management in electricity distribution networks: Smart tariffs, local markets and direct control," Utilities Policy, Elsevier, vol. 85(C).
    19. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
    20. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.