IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925010645.html
   My bibliography  Save this article

State-of-health estimation for EV battery packs via incremental capacity curves and S-transform

Author

Listed:
  • Tao, Siyi
  • Zhu, Jiangong
  • Li, Yuan
  • Chen, Siyang
  • Wang, Xiuwu
  • Wang, Xueyuan
  • Jiang, Bo
  • Chang, Wei
  • Wei, Xuezhe
  • Dai, Haifeng

Abstract

Accurate battery state-of-health (SOH) estimation in electric vehicles (EVs) plays a crucial role in mitigating user range anxiety. However, the suboptimal quality of cloud-based battery management system (BMS) data combined with the material heterogeneity of battery cathodes creates substantial barriers to developing universal SOH estimation methods for real-world EV applications. In this study, we propose a generalizable feature extraction framework based on the charging process. The method extracts time-domain features from incremental capacity (IC) curves and frequency-domain features using the S-transform, while also incorporating inter-cell inconsistency indicators. To assess the robustness of the extracted features, validation is conducted using laboratory data. Additionally, the influence of temperature on battery capacity and extracted features is analyzed through tests on batteries with varying capacities and cathode materials. Furthermore, real-world operational data from 37 EVs over a three-year period are employed to develop machine learning (ML) and deep learning (DL) models. Based on these results, a fusion model combining gated recurrent units (GRU) and LightGBM (LGB) is proposed, achieving material-independent battery SOH estimation with a mean absolute percentage error (MAPE) below 1.99 % and a maximum error (MAXE) under 6.57 %.

Suggested Citation

  • Tao, Siyi & Zhu, Jiangong & Li, Yuan & Chen, Siyang & Wang, Xiuwu & Wang, Xueyuan & Jiang, Bo & Chang, Wei & Wei, Xuezhe & Dai, Haifeng, 2025. "State-of-health estimation for EV battery packs via incremental capacity curves and S-transform," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010645
    DOI: 10.1016/j.apenergy.2025.126334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    2. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    3. Li, Renzheng & Hong, Jichao & Zhang, Huaqin & Chen, Xinbo, 2022. "Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles," Energy, Elsevier, vol. 257(C).
    4. Hongao Liu & Chang Li & Xiaosong Hu & Jinwen Li & Kai Zhang & Yang Xie & Ranglei Wu & Ziyou Song, 2025. "Multi-modal framework for battery state of health evaluation using open-source electric vehicle data," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Tian, Jiaqiang & Liu, Xinghua & Li, Siqi & Wei, Zhongbao & Zhang, Xu & Xiao, Gaoxi & Wang, Peng, 2023. "Lithium-ion battery health estimation with real-world data for electric vehicles," Energy, Elsevier, vol. 270(C).
    6. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    7. Steffen Link & Lara Schneider & Annegret Stephan & Lukas Weymann & Patrick Plötz, 2025. "Reliable industrial policies required to support the ramp-up of European battery production," Nature Energy, Nature, vol. 10(4), pages 433-434, April.
    8. Jiang, Yan & Meng, Xin, 2023. "A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data," Energy, Elsevier, vol. 284(C).
    9. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhang, Dayu & Wang, Zhenpo & Liu, Peng & She, Chengqi & Wang, Qiushi & Zhou, Litao & Qin, Zian, 2024. "A multi-step fast charging-based battery capacity estimation framework of real-world electric vehicles," Energy, Elsevier, vol. 294(C).
    11. Deng, Zhongwei & Xu, Le & Liu, Hongao & Hu, Xiaosong & Duan, Zhixuan & Xu, Yu, 2023. "Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles," Applied Energy, Elsevier, vol. 339(C).
    12. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    13. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Soo, Yin-Yi & Wang, Yujie & Xiang, Haoxiang & Chen, Zonghai, 2024. "Machine learning based battery pack health prediction using real-world data," Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinwei & Liu, Yonggui & Xiao, Bin, 2025. "Enhanced prediction for battery aging capacity using an efficient temporal convolutional network," Energy, Elsevier, vol. 320(C).
    2. Wang, Yaxuan & Guo, Shilong & Cui, Yue & Deng, Liang & Zhao, Lei & Li, Junfu & Wang, Zhenbo, 2025. "A comprehensive review of machine learning-based state of health estimation for lithium-ion batteries: data, features, algorithms, and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    3. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    4. Liu, Jia & Li, Chang & Liu, Hongao & Che, Yunhong & Li, Jinwen & Xie, Yang & Wu, Ranglei & Yang, Yalian & Hu, Xiaosong, 2025. "Rapid battery pack state of health estimation for electric vehicles considering polarization features in multi-stage charging," Energy, Elsevier, vol. 335(C).
    5. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    6. Xiong, Xin & Wang, Yujie & Jiang, Cong & Zhang, Xingchen & Xiang, Haoxiang & Chen, Zonghai, 2024. "End-to-end deep learning powered battery state of health estimation considering multi-neighboring incomplete charging data," Energy, Elsevier, vol. 292(C).
    7. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    8. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    9. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    10. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    11. Li, Hao & Chen, Chao, 2025. "Lithium-ion battery SOH prediction based on multi-dimensional features and multi-model feature selector," Energy, Elsevier, vol. 331(C).
    12. Donghui Ding & Zhao Li & Linhao Luo & Ming Jin & Bin Zhu & Yichen Zhong & Junhao Hu & Peng Cai & Huiqi Hu, 2025. "Large lithium-ion battery model for secure shared electric bike battery in smart cities," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Tian, Aina & He, Luyao & Ding, Tao & Dong, Kailang & Wang, Yuqin & Jiang, Jiuchun, 2025. "A generic physics-informed neural network framework for lithium-ion batteries state of health estimation," Energy, Elsevier, vol. 332(C).
    14. Chen, Baoliang & Liu, Yonggui, 2025. "Data driven-based health prognostics and charge estimation for lithium-ion batteries under varying discharging patterns," Energy, Elsevier, vol. 335(C).
    15. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    16. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    17. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    18. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    19. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    20. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.