IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925010517.html

Performance assessment and fast diagnosis of a μ-CHP solid oxide fuel cell system

Author

Listed:
  • Yu, Hangyu
  • Berset, Florian Bernard
  • Mäkinen, Pyry
  • Frantz, Cédric
  • Aubin, Philippe
  • Sommerfeld, Arne
  • Holstermann, Gregor
  • de Avila Ferreira, Tafarel
  • Moussaoui, Hamza
  • Jeanmonod, Guillaume
  • Wang, Ligang
  • Boltze, Matthias
  • François, Grégory
  • Van herle, Jan

Abstract

Online performance characterization and faulty condition diagnosis of micro-combined-heat-and-power (μ-CHP) solid oxide fuel cell (SOFC) system is crucial for ensuring safe in-house operation and lifespan prolongation. However, fast accurate detection of faulty conditions and performance characterization of compact SOFC system remains a problem. This study applied multiple diagnostic methods to characterize a μ-CHP SOFC system, including chronopotentiometry, electrochemical impedance spectroscopy (EIS), total harmonic distortion (THD) tool. Performance characterization and condition diagnosis were performed under different power demands, fuel starvation, high-carbon fuel feed and long-term operation. EIS results under normal conditions and fuel starvation showed that the bottom 27-cell half stack, located away from the fuel inlet, received less fuel compared to the top 30-cell half stack. Dispersion analysis indicated the safe fuel utilization for the system should be maintained below 81 % to avoid fuel starvation. THD measurements revealed that fuel starvation could be effectively detected by sinusoidal excitation with frequencies between 0.01 and 0.1 Hz, where a high THD index was observed. The carbon deposition behavior was examined by adjusting the carbon to oxygen ratio (COR) at the catalytic partial oxidation reactor inlet. With COR up to 1, no significant carbon deposition was detected according to the EIS measurements, system voltage and temperature monitoring. During long-term operation under normal conditions, no substantial degradation was detected, demonstrating stable and reliable power and heat generation. The novelty of this work included (1) the identification of operational variability between two half stacks, (2) the rapid detection of fuel starvation conditions using THD analysis, (3) performance assessment under high carbon fuel feed, and (4) long-term degradation characterization.

Suggested Citation

  • Yu, Hangyu & Berset, Florian Bernard & Mäkinen, Pyry & Frantz, Cédric & Aubin, Philippe & Sommerfeld, Arne & Holstermann, Gregor & de Avila Ferreira, Tafarel & Moussaoui, Hamza & Jeanmonod, Guillaume , 2025. "Performance assessment and fast diagnosis of a μ-CHP solid oxide fuel cell system," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010517
    DOI: 10.1016/j.apenergy.2025.126321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Königshofer, Benjamin & Boškoski, Pavle & Nusev, Gjorgji & Koroschetz, Markus & Hochfellner, Martin & Schwaiger, Marcel & Juričić, Đani & Hochenauer, Christoph & Subotić, Vanja, 2021. "Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant," Applied Energy, Elsevier, vol. 283(C).
    2. Shri Prakash, B. & Senthil Kumar, S. & Aruna, S.T., 2014. "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 149-179.
    3. Subotić, Vanja & Menzler, Norbert H. & Lawlor, Vincent & Fang, Qingping & Pofahl, Stefan & Harter, Philipp & Schroettner, Hartmuth & Hochenauer, Christoph, 2020. "On the origin of degradation in fuel cells and its fast identification by applying unconventional online-monitoring tools," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Yue & Ma, Yue & Wang, Chenpeng & Ye, Hao & Liu, Yinglong & Liu, Jiawei & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Yang, Huazheng & Liang, Bo, 2022. "A cofuel channel microtubular solid oxide fuel/electrolysis cell," Applied Energy, Elsevier, vol. 327(C).
    2. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    3. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    4. Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
    5. Hedayat, Nader & Du, Yanhai & Ilkhani, Hoda, 2017. "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1221-1239.
    6. Yuan, Hao & Zhou, Shulin & Zhang, Shaozhe & Tang, Wei & Jiang, Bo & Wei, Xuezhe & Dai, Haifeng, 2024. "Unconventional frequency response analysis of PEM fuel cell based on high-order frequency response function and total harmonic distortion," Applied Energy, Elsevier, vol. 357(C).
    7. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    8. Shin, Donghoon & Yoo, Seungryeol, 2023. "Diagnostic method for PEM fuel cell states using probability Distribution-Based loss component analysis for voltage loss decomposition," Applied Energy, Elsevier, vol. 330(PB).
    9. Banasiak, David & Kienberger, Thomas, 2024. "A comparative analysis of the economic feasibility of reversible hydrogen systems based on time-resolved operation optimisation," Applied Energy, Elsevier, vol. 371(C).
    10. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    12. Li, Ruhuan & Zhou, Jun & Qiu, Zitong & Li, Haonan & Zhou, Zilin & Li, Jinman & Yu, Haoyu & Zhang, Xuzheng & Wu, Kai, 2025. "Optimal model-based electrochemical characteristics and thermal management of reversible solid oxide cells," Applied Energy, Elsevier, vol. 395(C).
    13. Kasper, Lukas & Schwarzmayr, Paul & Birkelbach, Felix & Javernik, Florian & Schwaiger, Michael & Hofmann, René, 2024. "A digital twin-based adaptive optimization approach applied to waste heat recovery in green steel production: Development and experimental investigation," Applied Energy, Elsevier, vol. 353(PB).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.