Author
Listed:
- Alves Ribeiro, João
- Alves Ribeiro, Bruno
- Pimenta, Francisco
- M.O. Tavares, Sérgio
- Zhang, Jie
- Ahmed, Faez
Abstract
Offshore wind energy leverages the high intensity and consistency of oceanic winds, playing a key role in the transition to renewable energy. As energy demands grow, larger turbines are required to optimize power generation and reduce the Levelized Cost of Energy (LCoE), which represents the average cost of electricity over a project’s lifetime. However, upscaling turbines introduces engineering challenges, particularly in the design of supporting structures, especially towers. These towers must support increased loads while maintaining structural integrity, cost-efficiency, and transportability, making them essential to offshore wind projects’ success. This paper presents a comprehensive review of the latest advancements, challenges, and future directions driven by Artificial Intelligence (AI) in the design optimization of Offshore Wind Turbine (OWT) structures, with a focus on towers. It provides an in-depth background on key areas such as design types, load types, analysis methods, design processes, monitoring systems, Digital Twin (DT) technology, software, standards, reference turbines, economic factors, and optimization techniques. Additionally, it includes a state-of-the-art review of optimization studies related to tower design optimization, presenting a detailed examination of turbines, software, loads, optimization methods, design variables and constraints, analysis, and findings, motivating future research to refine design approaches for effective turbine upscaling and improved efficiency. Lastly, the paper explores future directions where AI can revolutionize tower design optimization, enabling the development of efficient, scalable, and sustainable structures. By addressing the upscaling challenges and supporting the growth of renewable energy, this work contributes to shaping the future of offshore wind turbine towers and other supporting structures.
Suggested Citation
Alves Ribeiro, João & Alves Ribeiro, Bruno & Pimenta, Francisco & M.O. Tavares, Sérgio & Zhang, Jie & Ahmed, Faez, 2025.
"Offshore wind turbine tower design and optimization: A review and AI-driven future directions,"
Applied Energy, Elsevier, vol. 397(C).
Handle:
RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010244
DOI: 10.1016/j.apenergy.2025.126294
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.