IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925010177.html
   My bibliography  Save this article

Disturbed security-constrained and time-variant optimal power flow for dynamic power system based on chaotic-genetic-centroid puffin optimization

Author

Listed:
  • Zhang, Xiaochen
  • Xu, Kaijie
  • Liao, Shengchen
  • Qiu, Lin
  • Ye, Chengjin
  • Fang, Youtong

Abstract

Although the Security-Constrained Optimal Power Flow (SCOPF) model provides an effective model for simulating fault scenarios in power systems, it often overlooks bus-level fluctuations. Therefore, this paper introduces the Disturbed Security-Constrained Optimal Power Flow (D-SCOPF) to model the instability of power systems, leading to the development of a disturbed topology varying (DTV) test system. Additionally, to simulate the dynamic and time-varying properties of power systems, the fluctuations in electric vehicle load are incorporated into the system, resulting in the construction of a Time-Variant (TV) test system. These enhancements improve model realism but also significantly increase computational complexity. As a result, finding feasible solutions in such a complex model becomes a substantial challenge. Considering the high-dimensional and multi-constraint properties of the OPF problem, this paper proposes a novel Chaotic-Genetic-Centroid Puffin Optimization (CGC-PO) algorithm based on Arctic Puffin Optimization (APO). CGC-PO aims to specifically improve APO’s exploration, exploitation, and population merging processes through centroid opposition-based learning, normalized chaotic local search, and genetic hybrid incorporation. To validate the feasibility of the proposed algorithm, a series of tests were first conducted on benchmark functions, followed by quantitative, convergence, and statistical analyses. Besides, different modified test systems were constructed based on the IEEE 30-bus, IEEE 57-bus, IEEE 118-bus and Illinois 200-bus systems. Both single-objective and multi-objective optimization functions were evaluated on these test systems. By comparing the results with those obtained from several well-known optimization algorithms, including TLBO, PSO, PLO, SMA, HGS, MGO, ALA, MSO and APO, the effectiveness, superiority, and robustness of the proposed CGC-PO algorithm are demonstrated.

Suggested Citation

  • Zhang, Xiaochen & Xu, Kaijie & Liao, Shengchen & Qiu, Lin & Ye, Chengjin & Fang, Youtong, 2025. "Disturbed security-constrained and time-variant optimal power flow for dynamic power system based on chaotic-genetic-centroid puffin optimization," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010177
    DOI: 10.1016/j.apenergy.2025.126287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    2. Meng, Anbo & Zeng, Cong & Wang, Peng & Chen, De & Zhou, Tianmin & Zheng, Xiaoying & Yin, Hao, 2021. "A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem," Energy, Elsevier, vol. 225(C).
    3. Li, Ling-Ling & Ji, Bing-Xiang & Liu, Guan-Chen & Yuan, Jian-Ping & Tseng, Shuan-Wei & Lim, Ming K. & Tseng, Ming-Lang, 2024. "Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm," Energy, Elsevier, vol. 294(C).
    4. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    5. El-Sattar, Hoda Abd & Hassan, Mohamed H. & Vera, David & Jurado, Francisco & Kamel, Salah, 2024. "Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm," Renewable Energy, Elsevier, vol. 227(C).
    6. Ghasemi, Mojtaba & Ghavidel, Sahand & Aghaei, Jamshid & Gitizadeh, Mohsen & Falah, Hasan, 2014. "Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 271-284.
    7. Hasanien, Hany M. & Alsaleh, Ibrahim & Tostado-Véliz, Marcos & Zhang, Miao & Alateeq, Ayoob & Jurado, Francisco & Alassaf, Abdullah, 2024. "Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehicles," Energy, Elsevier, vol. 286(C).
    8. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    9. Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
    10. Ozkaya, Burcin, 2024. "Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy," Applied Energy, Elsevier, vol. 368(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    2. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    3. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    4. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    5. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    6. Dey, Bishwajit & Khumanleima Chanu, Laishram & Sharma, Gulshan & Bokoro, Pitshou N. & Bansal, Ramesh C. & Kumar, Rajesh, 2025. "Economic operation of a microgrid system with amalgamated load shifting/curtailing policy and smart PHEV charging," Energy, Elsevier, vol. 334(C).
    7. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    8. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    9. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    10. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    11. Jiping Xu & Ziyi Wang & Xin Zhang & Jiabin Yu & Xiaoyu Cui & Yan Zhou & Zhiyao Zhao, 2022. "A Rice Security Risk Assessment Method Based on the Fusion of Multiple Machine Learning Models," Agriculture, MDPI, vol. 12(6), pages 1-15, June.
    12. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    13. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    14. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    15. Meng, Anbo & Wu, Zhenbo & Zhang, Zhan & Xu, Xuancong & Tang, Yanshu & Xie, Zhifeng & Xian, Zikang & Zhang, Haitao & Luo, Jianqiang & Wang, Yu & Yan, Baiping & Yin, Hao, 2024. "Optimal scheduling of integrated energy system using decoupled distributed CSO with opposition-based learning and neighborhood re-dispatch strategy," Renewable Energy, Elsevier, vol. 224(C).
    16. El-Maaroufi, Abdellah & Daoudi, Mohammed & Ahl Laamara, Rachid, 2024. "Techno-economic analysis of a PV/WT/biomass off-grid hybrid power system for rural electrification in northern Morocco using HOMER," Renewable Energy, Elsevier, vol. 231(C).
    17. Timo Lohmann & Michael R. Bussieck & Lutz Westermann & Steffen Rebennack, 2021. "High-Performance Prototyping of Decomposition Methods in GAMS," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 34-50, January.
    18. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    19. Gurpreet Kaur & Mohit Kumar & J. S. Dhillon, 2025. "Dynamic Multi-area Generation Scheduling with Renewable Energy Sources Exploiting Optimistic Sine–Cosine Algorithm," SN Operations Research Forum, Springer, vol. 6(2), pages 1-53, June.
    20. Sahin, Berk & Hasenbein, John & Kutanoglu, Erhan, 2025. "Value of considering extreme weather resilience in grid capacity expansion planning," Reliability Engineering and System Safety, Elsevier, vol. 259(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.