IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925009924.html

Demand and supply curve forecasting using a monotonic autoencoder for short-term day-ahead electricity market bid curves

Author

Listed:
  • Sinha, Nabangshu
  • Lucheroni, Carlo

Abstract

This paper proposes a novel short-term modeling and forecasting framework for day-ahead electricity market demand and supply price/volume curves. These economically and financially important curves are obtained daily from data derived from the full set of the price/volume bids submitted to the market, and are computed preliminarily to the market price setting phase. They contain a wealth of market information, but are difficult to forecast due to the peculiarity of their data structure. They are intrinsically monotonic, and take values on an irregularly distributed set of volume values which change in location and number each day. Unlike in the case of electricity price forecasting, only a few research groups have addressed the curve forecasting problem so far. In addition, because it is difficult to preserve monotonicity when forecasting these curves, and although its violation can result in incoherent forecasts, the existing curve forecasting models usually don’t explicitly enforce this constraint. In this paper, a modeling and forecasting framework is proposed which decomposes each curve into three structurally meaningful and interpretable geometrical entities, corresponding to macroscopic features of the curves. At a given time t, these geometrical entities are two special (price,volume) curve points At and Bt, and the price/volume vector Ct between them. On the one hand, the At and Bt points are directly and individually forecast using a variant of the Echo State Network machine learning architecture. On the other hand, the dependency on time of the Ct segment is simplified, and this simplified Ct is forecast by forecasting its reduced representation as internal to a suitably developed monotonic autoencoder network. Curve comparison, necessary for curve fitting, for the quality assessment of the forecasts, and for benchmarking the proposed framework against other available models, is made by means of a suitably developed metric algorithm which we call ‘Heterogeneous Curves Mean Absolute Error’. The three components of the curves, At, Bt and Ct, are hence optimally combined and glued together by means of optimization of this error. The framework is tested on data from the NORD zone of the Italian day-ahead IPEX zonal market. It is numerically shown that forecasting with the proposed framework outperforms forecasting with the few benchmarks available, including stochastic-functional and PCA-based models.

Suggested Citation

  • Sinha, Nabangshu & Lucheroni, Carlo, 2025. "Demand and supply curve forecasting using a monotonic autoencoder for short-term day-ahead electricity market bid curves," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009924
    DOI: 10.1016/j.apenergy.2025.126262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
    2. Florian Ziel & Rick Steinert, 2017. "Probabilistic Mid- and Long-Term Electricity Price Forecasting," Papers 1703.10806, arXiv.org, revised May 2018.
    3. Florian Ziel & Rick Steinert, 2015. "Electricity Price Forecasting using Sale and Purchase Curves: The X-Model," Papers 1509.00372, arXiv.org, revised Aug 2016.
    4. Matteo Pelagatti, 2012. "Supply Function Prediction in Electricity Auctions," Working Papers 20120301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
    5. Kazmi, Hussain & Tao, Zhenmin, 2022. "How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead," Applied Energy, Elsevier, vol. 323(C).
    6. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    7. Deihimi, Ali & Showkati, Hemen, 2012. "Application of echo state networks in short-term electric load forecasting," Energy, Elsevier, vol. 39(1), pages 327-340.
    8. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    9. Li, Zehang & Alonso Fernández, Andrés Modesto & Elías, Antonio & Morales, Juan M., 2024. "Clustering and forecasting of day-ahead electricity supply curves using a market-based distance," DES - Working Papers. Statistics and Econometrics. WS 43805, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Hu, Huanling & Wang, Lin & Peng, Lu & Zeng, Yu-Rong, 2020. "Effective energy consumption forecasting using enhanced bagged echo state network," Energy, Elsevier, vol. 193(C).
    11. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    12. Miguel Pinhão & Miguel Fonseca & Ricardo Covas, 2022. "Electricity Spot Price Forecast by Modelling Supply and Demand Curve," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
    13. Stephen Haben & Julien Caudron & Jake Verma, 2021. "Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain," Forecasting, MDPI, vol. 3(3), pages 1-37, August.
    14. Ghelasi, Paul & Ziel, Florian, 2024. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 581-596.
    15. Ciarreta, Aitor & Martinez, Blanca & Nasirov, Shahriyar, 2023. "Forecasting electricity prices using bid data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1253-1271.
    16. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    17. Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
    18. Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
    3. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    4. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    5. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    6. Ghelasi, Paul & Ziel, Florian, 2025. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 217(C).
    7. Narajewski, Michał & Ziel, Florian, 2022. "Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs," Energy Economics, Elsevier, vol. 110(C).
    8. Philip Beran & Arne Vogler, 2021. "Multi-Day-Ahead Electricity Price Forecasting: A Comparison of fundamental, econometric and hybrid Models," EWL Working Papers 2102, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2021.
    9. Mahler, Valentin & Girard, Robin & Kariniotakis, Georges, 2022. "Data-driven structural modeling of electricity price dynamics," Energy Economics, Elsevier, vol. 107(C).
    10. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    11. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    12. Ciarreta, Aitor & Martinez, Blanca & Nasirov, Shahriyar, 2023. "Forecasting electricity prices using bid data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1253-1271.
    13. Stephen Haben & Julien Caudron & Jake Verma, 2021. "Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain," Forecasting, MDPI, vol. 3(3), pages 1-37, August.
    14. Valentin Mahler & Robin Girard & Georges Kariniotakis, 2021. "Data-driven Structural Modeling of Electricity Price Dynamics," Working Papers hal-03445396, HAL.
    15. Gunnhildur H. Steinbakk & Alex Lenkoski & Ragnar Bang Huseby & Anders L{o}land & Tor Arne {O}ig{aa}rd, 2018. "Using published bid/ask curves to error dress spot electricity price forecasts," Papers 1812.02433, arXiv.org.
    16. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    17. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    18. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    19. Castello, Oleksandr & Resta, Marina, 2025. "Univariate and multivariate forecasting of the electricity futures curve using Dynamic Recurrent Neural Networks," Applied Energy, Elsevier, vol. 394(C).
    20. Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.