IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v396y2025ics0306261925009912.html

Abnormal data recognition method for wind turbines based on alpha channel fusion

Author

Listed:
  • Chen, Yan
  • Ban, Guihua
  • Ding, Tingxiao

Abstract

Although image processing technology plays an advanced role in the field of abnormal detection of Wind Power Curves (WPC), enabling accurate identification of various types of abnormal data, it still faces three major challenges: reliance on manually labeled reference samples, representation of data density through rasterization and distance calculations, and insufficient accuracy in identifying stacked abnormal data. To address these problems, this study proposes a simple and efficient method for identifying and cleaning WPC abnormal data. This method does not rely on manually labeled reference samples and achieves the identification of different types of WPC abnormal data by merely adjusting the values of two parameters. The proposed method first employs an alpha channel fusion mechanism to directly represent data density in continuous space, eliminating the need for rasterization. Secondly, it introduces boundary discretization, sequence smoothing techniques, and a boundary completion strategy, which are used to accurately extract the boundaries of normal and abnormal data. Finally, by integrating the Canny edge detection algorithm and image morphology principles, the method achieves precise identification and cleaning of all WPC abnormal data. The 134 WPC datasets from the 2022 Baidu KDD Cup Competition were used as experimental data in this study. The effectiveness of the proposed method was validated through experimental comparisons with seven models on six representative datasets. Additionally, a simple analysis of wind curtailment in the region was conducted by calculating the wind curtailment rates across the 134 datasets. The data and code of this study are available.

Suggested Citation

  • Chen, Yan & Ban, Guihua & Ding, Tingxiao, 2025. "Abnormal data recognition method for wind turbines based on alpha channel fusion," Applied Energy, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009912
    DOI: 10.1016/j.apenergy.2025.126261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Morrison, Rory & Liu, Xiaolei & Lin, Zi, 2022. "Anomaly detection in wind turbine SCADA data for power curve cleaning," Renewable Energy, Elsevier, vol. 184(C), pages 473-486.
    2. Fengjuan Zhang & Xiaohui Zhang & Zhilei Xu & Keliang Dong & Zhiwei Li & Yubo Liu, 2024. "Cleaning of Abnormal Wind Speed Power Data Based on Quartile RANSAC Regression," Energies, MDPI, vol. 17(22), pages 1-14, November.
    3. Ban, Guihua & Chen, Yan & Xiong, Zhenhua & Zhuo, Yixin & Huang, Kui, 2024. "The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved Autoformer," Energy, Elsevier, vol. 290(C).
    4. Liang, Guoyuan & Su, Yahao & Wu, Xinyu & Ma, Jiajun & Long, Huan & Song, Zhe, 2023. "Abnormal data cleaning for wind turbines by image segmentation based on active shape model and class uncertainty," Renewable Energy, Elsevier, vol. 216(C).
    5. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    6. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    7. Xiangqing Yin & Yi Liu & Li Yang & Wenchao Gao, 2022. "Abnormal Data Cleaning Method for Wind Turbines Based on Constrained Curve Fitting," Energies, MDPI, vol. 15(17), pages 1-22, August.
    8. Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
    9. Long, Huan & Xu, Shaohui & Gu, Wei, 2022. "An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection," Applied Energy, Elsevier, vol. 311(C).
    10. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    11. Song, Feng & Yu, Zichao & Zhuang, Weiting & Lu, Ao, 2021. "The institutional logic of wind energy integration: What can China learn from the United States to reduce wind curtailment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Wei, Haochong & Chen, Yan & Yu, Miaolin & Ban, Guihua & Xiong, Zhenhua & Su, Jin & Zhuo, Yixin & Hu, Jiaqiu, 2024. "Alleviating distribution shift and mining hidden temporal variations for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 290(C).
    13. Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
    14. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tianhao & Shan, Linke & Jiang, Meihui & Li, Fangning & Kong, Fannie & Du, Pengcheng & Zhu, Hongyu & Goh, Hui Hwang & Kurniawan, Tonni Agustiono & Huang, Chao & Zhang, Dongdong, 2025. "Multi-dimensional data processing and intelligent forecasting technologies for renewable energy generation," Applied Energy, Elsevier, vol. 398(C).
    2. Chengming Zuo & Juchuan Dai & Guo Li & Mimi Li & Fan Zhang, 2023. "Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC," Energies, MDPI, vol. 16(6), pages 1-24, March.
    3. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
    4. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
    5. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    6. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    7. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    8. Wang, Hexian & Guo, Dongjie & Wang, Lingmei & Zhou, Tongming & Jia, Chengzhen & Liu, Yushan, 2025. "A novel frequency sparse downsampling interaction transformer for wind power forecasting," Energy, Elsevier, vol. 326(C).
    9. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    10. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
    11. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Liang, Guoyuan & Su, Yahao & Wu, Xinyu & Ma, Jiajun & Long, Huan & Song, Zhe, 2023. "Abnormal data cleaning for wind turbines by image segmentation based on active shape model and class uncertainty," Renewable Energy, Elsevier, vol. 216(C).
    13. Yan Chen & Miaolin Yu & Haochong Wei & Huanxing Qi & Yiming Qin & Xiaochun Hu & Rongxing Jiang, 2025. "A Lightweight Framework for Rapid Response to Short-Term Forecasting of Wind Farms Using Dual Scale Modeling and Normalized Feature Learning," Energies, MDPI, vol. 18(3), pages 1-20, January.
    14. Xu, Rui & Fang, Haoyu & Zeng, Huanze & Wu, Binrong, 2025. "A novel interpretable wind speed forecasting based on the multivariate variational mode decomposition and temporal fusion transformer," Energy, Elsevier, vol. 331(C).
    15. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    16. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    17. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Wang, Tao & Xu, Ye & Qin, Yu & Wang, Xu & Zheng, Feifan & Li, Wei, 2025. "Short-term PV forecasting of multiple scenarios based on multi-dimensional clustering and hybrid transformer-BiLSTM with ECPO," Energy, Elsevier, vol. 334(C).
    19. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    20. Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.