IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925009043.html

Two-stage optimization configuration of shared energy storage for multi-distributed photovoltaic clusters in rural distribution networks considering self-consumption and self-sufficiency

Author

Listed:
  • Kang, Keyi
  • Jia, Heping
  • Hui, Hongxun
  • Liu, Dunnan

Abstract

The integration of energy storage (ES) systems with distributed photovoltaic (DPV) generation in rural Chinese distribution networks enhances self-consumption while mitigating grid congestion. However, the geographically dispersed nature of rural DPV deployment leads to suboptimal storage utilization when configuring ES for individual village-level DPV clusters, primarily due to the absence of inter-cluster energy exchange. This operational inefficiency significantly escalates both initial investment and maintenance costs. In this paper, considering the complementarity between outputs of DPV clusters and residential loads in different villages, a cooperative operation strategy for multi-DPV clusters and shared energy storage (SES) is proposed with the goal of improving the self-consumption and self-sufficiency. Then, a comprehensive life-cycle cost-income analysis framework and a two-stage SES optimization configuration model is developed. The proposed model is solved by the particle swarm algorithm with improved adaptive inertia weights (APSO). A rural DPV demonstration zone in northern China serves as the case study, where multiple scenarios incorporating various ES configurations and demand response (DR) implementations are designed. Comparative analysis reveals that SES outperforms distributed energy storage (DES), boosting PV self-consumption by 2.44 %, increasing power self-sufficiency by 2.26 %, and lowering levelized annual costs per rural household by 2.54 %. When integrated with DR, these benefits increase to 3.46 %, 3.20 %, and 3.72 % respectively. The research outcomes provide useful reference for investment planning and coordinated operation of multi-DPV clusters and shared storage systems, facilitating sustainable development of DPV in rural areas.

Suggested Citation

  • Kang, Keyi & Jia, Heping & Hui, Hongxun & Liu, Dunnan, 2025. "Two-stage optimization configuration of shared energy storage for multi-distributed photovoltaic clusters in rural distribution networks considering self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009043
    DOI: 10.1016/j.apenergy.2025.126174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).
    2. Ramos, Sérgio & Roque, Luís A.C. & Gomes, António & Soares, João & Rolle, José Calvo & Vale, Zita, 2025. "Multi-objective model for residential energy management in context of individual self-consumption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 231(C), pages 120-127.
    3. Wang, Weijun & Li, Chen & He, Yan & Bai, Haining & Jia, Kaiqing & Kong, Zhe, 2024. "Enhancement of household photovoltaic consumption potential in village microgrid considering electric vehicles scheduling and energy storage system configuration," Energy, Elsevier, vol. 311(C).
    4. Ahmadiahangar, Roya & Karami, Hossein & Husev, Oleksandr & Blinov, Andrei & Rosin, Argo & Jonaitis, Audrius & Sanjari, Mohammad Javad, 2022. "Analytical approach for maximizing self-consumption of nearly zero energy buildings- case study: Baltic region," Energy, Elsevier, vol. 238(PB).
    5. Yang Liu & Dawei Liu & Keyi Kang & Guanqing Wang & Yanzhao Rong & Weijun Wang & Siyu Liu, 2024. "Research on Two-Stage Energy Storage Optimization Configurations of Rural Distributed Photovoltaic Clusters Considering the Local Consumption of New Energy," Energies, MDPI, vol. 17(24), pages 1-31, December.
    6. Wang, Can & Liu, Yuzheng & Zhang, Yu & Xi, Lei & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Strategy for optimizing the bidirectional time-of-use electricity price in multi-microgrids coupled with multilevel games," Energy, Elsevier, vol. 323(C).
    7. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    8. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    9. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    10. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    11. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Zabihinia Gerdroodbari, Yasin & Khorasany, Mohsen & Razzaghi, Reza & Heidari, Rahmat, 2024. "Management of prosumers using dynamic export limits and shared Community Energy Storage," Applied Energy, Elsevier, vol. 355(C).
    13. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    14. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    15. Wang, Haifeng & Liao, Yate & Zhang, Jiarui & Cai, Ziwen & Zhao, Yun & Wang, Weijun, 2024. "Optimization of shared energy storage configuration for village-level photovoltaic systems considering vehicle charging management," Energy, Elsevier, vol. 311(C).
    16. Mulleriyawage, U.G.K. & Wang, P. & Rui, T. & Zhang, K. & Hu, C. & Shen, W.X., 2023. "Prosumer-centric demand side management for minimizing electricity bills in a DC residential PV-battery system: An Australian household case study," Renewable Energy, Elsevier, vol. 205(C), pages 800-812.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talihati, Baligen & Tao, Shengyu & Fu, Shiyi & Zhang, Bowen & Fan, Hongtao & Li, Qifen & Lv, Xiaodong & Sun, Yaojie & Wang, Yu, 2024. "Energy storage sharing in residential communities with controllable loads for enhanced operational efficiency and profitability," Applied Energy, Elsevier, vol. 373(C).
    2. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    3. Selim, Alaa & Mo, Huadong & Pota, Hemanshu & Dong, Daoyi, 2025. "Day ahead scheduling of battery energy storage system operation using growth optimizer within cyber–physical–social systems," Energy, Elsevier, vol. 331(C).
    4. Dai, Bin & Wang, Honglei & Li, Bin & Li, Chengjiang & Tan, Zhukui, 2024. "Capacity model and optimal scheduling strategy of multi-microgrid based on shared energy storage," Energy, Elsevier, vol. 306(C).
    5. Song, Xiaoling & Wu, Han & Zhang, Huqing & Guo, Jianxin & Zhang, Zhe & Peña-Mora, Feniosky, 2025. "Can retail electricity pricing promote microgrid operators to leverage shared energy storage services among internal aggregators?," Energy, Elsevier, vol. 314(C).
    6. Shivanaganna, Nethravathi & Shivamurthy, K.P. & Boddapati, Venkatesh, 2024. "Optimal strategy for transition into nearly zero energy residential buildings: A case study," Energy, Elsevier, vol. 307(C).
    7. Jiahao Chen & Bing Sun & Yuan Zeng & Ruipeng Jing & Shimeng Dong & Jingran Wang, 2023. "An Optimal Scheduling Method of Shared Energy Storage System Considering Distribution Network Operation Risk," Energies, MDPI, vol. 16(5), pages 1-24, March.
    8. Yuchen Liu & Zhenhai Dou & Zheng Wang & Jiaming Guo & Jingwei Zhao & Wenliang Yin, 2024. "Optimal Configuration of Electricity-Heat Integrated Energy Storage Supplier and Multi-Microgrid System Scheduling Strategy Considering Demand Response," Energies, MDPI, vol. 17(21), pages 1-23, October.
    9. Yang Liu & Dawei Liu & Keyi Kang & Guanqing Wang & Yanzhao Rong & Weijun Wang & Siyu Liu, 2024. "Research on Two-Stage Energy Storage Optimization Configurations of Rural Distributed Photovoltaic Clusters Considering the Local Consumption of New Energy," Energies, MDPI, vol. 17(24), pages 1-31, December.
    10. Cui, Shiting & Wu, Jun & Gao, Yao & Zhu, Ruijin, 2023. "A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply," Applied Energy, Elsevier, vol. 349(C).
    11. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    12. Xie, Yulong & Li, Lee & Hou, Tianyu & Luo, Kang & Xu, Zhenyu & Dai, Mingcheng & Zhang, Lixiong, 2024. "Shared energy storage configuration in distribution networks: A multi-agent tri-level programming approach," Applied Energy, Elsevier, vol. 372(C).
    13. Gang Liang & Yu Wang & Bing Sun & Zheng Zhang, 2024. "An Optimization Method for the Distributed Collaborative Operation of Multilateral Entities Considering Dynamic Time-of-Use Electricity Price in Active Distribution Network," Energies, MDPI, vol. 17(2), pages 1-19, January.
    14. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan & Cui, Chuanshi, 2024. "Peer-to-peer energy sharing model considering multi-objective optimal allocation of shared energy storage in a multi-microgrid system," Energy, Elsevier, vol. 288(C).
    15. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    16. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    17. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    18. Daniela Isola & Stefano Bigiotti & Alvaro Marucci, 2025. "Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management," Sustainability, MDPI, vol. 17(12), pages 1-23, June.
    19. Behzadi, Amirmohammad & Duwig, Christophe & Ploskic, Adnan & Holmberg, Sture & Sadrizadeh, Sasan, 2024. "Application to novel smart techniques for decarbonization of commercial building heating and cooling through optimal energy management," Applied Energy, Elsevier, vol. 376(PA).
    20. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.