IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925008645.html

Optimizing renewable energy integration pathways: Inter-regional coordination and storage in India's power sector

Author

Listed:
  • Venkataramana, Nikhil Thejesh
  • Kanitkar, Tejal
  • Ramadesigan, Venkatasailanathan
  • Banerjee, Rangan

Abstract

India's rapid economic growth and ambitious renewable energy (RE) targets require modeling frameworks capable of capturing the complexities of high RE integration. This study develops a capacity-expansion and dispatch model with a 15-min resolution for India's Western (WR) and Southern (SR) Regions, which together represent over half of the nation's electricity demand, covering 592 million people and 59 % of India's Gross Domestic Product. We examine multiple scenarios for RE integration, including the operationalization of India's policy for Renewable Purchase Obligations (RPO). The analysis considers capacity constraints on coal and hydro power, the role of battery storage, and two RPO compliance frameworks: one demanding each region individually meet its RE requirement (layered) and another allowing the WR + SR system to fulfill the target collectively (centralized). Results show that regional and inter-regional coordination reduces system costs and boosts RE penetration compared to purely state-based dispatch. Limiting coal or hydro expansions to pipeline projects increases reliance on battery storage, raising costs under current assumptions. When solar is paired with large-scale storage, RE shares often exceed mandated levels but with higher investment. Under layered compliance, each region expands RE more evenly but may incur larger costs. Centralized compliance concentrates capacity in areas with lower costs yet can introduce equity concerns in some regions. Overall, the findings underscore the importance of coordinated resource planning, robust transmission infrastructure, and adaptable policy mechanisms to meet India's climate objectives. By tailoring RPO strategies to regional resource endowments, India can move toward a cleaner and more reliable power system.

Suggested Citation

  • Venkataramana, Nikhil Thejesh & Kanitkar, Tejal & Ramadesigan, Venkatasailanathan & Banerjee, Rangan, 2025. "Optimizing renewable energy integration pathways: Inter-regional coordination and storage in India's power sector," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008645
    DOI: 10.1016/j.apenergy.2025.126134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Shi-man & Feng, Tian-tian, 2024. "Blockchain-based smart trading mechanism for renewable energy power consumption vouchers and green certificates: Platform design and simulation," Applied Energy, Elsevier, vol. 369(C).
    2. Rajesh, K. & Bhuvanesh, A. & Kannan, S. & Thangaraj, C., 2016. "Least cost generation expansion planning with solar power plant using Differential Evolution algorithm," Renewable Energy, Elsevier, vol. 85(C), pages 677-686.
    3. Hu, Fanshuai & Zhou, Dequn & Zhu, Qingyuan & Wang, Qunwei, 2024. "How dynamic renewable portfolio standards affect trading behavior of power generators? Considering green certificate and reward/penalty mechanism," Applied Energy, Elsevier, vol. 375(C).
    4. Karunanithi, K. & Saravanan, S. & Prabakar, B.R. & Kannan, S. & Thangaraj, C., 2017. "Integration of Demand and Supply Side Management strategies in Generation Expansion Planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 966-982.
    5. Schmid, Gisèle, 2012. "The development of renewable energy power in India: Which policies have been effective?," Energy Policy, Elsevier, vol. 45(C), pages 317-326.
    6. K. Karunanithi & S. Ramesh & S.P. Raja & N.K. Rayaguru & S. Saravanan, 2021. "Investigations of electricity expansion environmental planning using LEAP model for sustainability," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 17(4), pages 384-397.
    7. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    8. Hjelmeland, Martin & Nøland, Jonas Kristiansen & Backe, Stian & Korpås, Magnus, 2025. "The role of nuclear energy and baseload demand in capacity expansion planning for low-carbon power systems," Applied Energy, Elsevier, vol. 377(PA).
    9. Amrutha, A.A. & Balachandra, P. & Mathirajan, M., 2017. "Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India," Energy Policy, Elsevier, vol. 106(C), pages 48-58.
    10. Laha, Priyanka & Chakraborty, Basab & Østergaard, Poul Alberg, 2020. "Electricity system scenario development of India with import independence in 2030," Renewable Energy, Elsevier, vol. 151(C), pages 627-639.
    11. Moulik, T. K. & Dholakia, B. H. & Dholakia, R. H. & Ramani, K. V. & Shukla, P. R., 1992. "Energy planning in India : The relevance of regional planning for national policy," Energy Policy, Elsevier, vol. 20(9), pages 836-846, September.
    12. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    13. Aparna Sawhney, 2022. "Renewable Energy Certificates Trading in India: A Decade in Review," ADBI Working Papers 1313, Asian Development Bank Institute.
    14. Daniel, J. & Dicorato, M. & Forte, G. & Iniyan, S. & Trovato, M., 2009. "A methodology for the electrical energy system planning of Tamil Nadu state (India)," Energy Policy, Elsevier, vol. 37(3), pages 904-914, March.
    15. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Rajesh, K. & Karthikeyan, K. & Kannan, S. & Thangaraj, C., 2016. "Generation expansion planning based on solar plants with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 953-964.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Guolian & Huang, Wenchuan & Ye, Lingling, 2025. "A flexible operation scheme for ultra-supercritical unit under wide load variations based on improved EADRC and modified northern goshawk optimizer," Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Ghanbarzadeh, Taraneh & Habibi, Daryoush & Aziz, Asma, 2025. "Addressing reliability challenges in generation capacity planning under high penetration of renewable energy resources and storage solutions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    3. Sanyal, Shubham & Samdarshi, S.K., 2025. "Application of low emissions analysis platform for demand side management for the electricity sector of Indian State of Jharkhand," Energy, Elsevier, vol. 318(C).
    4. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    5. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    6. Balasubramanian, S. & Balachandra, P., 2021. "Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Zhao, Xiaoli & Li, Shujie & Zhang, Sufang & Yang, Rui & Liu, Suwei, 2016. "The effectiveness of China's wind power policy: An empirical analysis," Energy Policy, Elsevier, vol. 95(C), pages 269-279.
    9. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    10. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    11. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    12. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    13. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    14. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    15. Yuya Tanigawa & Narayanan Krishnan & Eitaro Oomine & Atushi Yona & Hiroshi Takahashi & Tomonobu Senjyu, 2023. "Clustering Method for Load Demand to Shorten the Time of Annual Simulation," Energies, MDPI, vol. 16(5), pages 1-22, February.
    16. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    17. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    18. Liu, Qian & Fang, Debin, 2025. "Deceptive greenwashing by retail electricity providers under renewable portfolio standards: The impact of market transparency," Energy Policy, Elsevier, vol. 202(C).
    19. Rodgers, Mark & Coit, David & Felder, Frank & Carlton, Annmarie, 2019. "Assessing the effects of power grid expansion on human health externalities," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 92-104.
    20. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.