IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925008402.html

Online incremental probability power prediction for distributed PVs in heterogeneous and dynamic data environments

Author

Listed:
  • Zhang, Le
  • Chen, Ziyu
  • Zhu, Jizhong
  • Lin, Kaixin
  • Huang, Linying

Abstract

Data sharing is a standard solution to improve the prediction accuracy of data-driven models for distributed photovoltaic (PV) power with small samples. Unfortunately, in practice, due to decentralized ownership and diverse, dynamic external environments, this solution suffers from challenges in data privacy, heterogeneity, and dynamic data learning. To handle these challenges, this paper proposes an incremental probabilistic prediction method based on a Bayesian stochastic configuration network (BSCN) and personalized federated learning (PFL). Concretely, a stochastic configuration network, an emerging neural network with a single hidden layer and no iteration, is used to quickly build the power predictor. Aiming to obtain the posterior distribution and determine the probabilistic output, Bayesian inference is used to evaluate the output parameters of SCN. Faced with the performance degradation caused by small samples and heterogeneous data, a novel PFL framework is designed to improve the prediction accuracy while protecting privacy. Technically, the server acts as a bridge for information sharing and aggregates local posterior distributions in a personalized manner, guided by Wasserstein distance to integrate similar features as much as possible. With the personalized posterior from the server as the prior, each client performs personalized retraining locally to mitigate the adverse effects of the data heterogeneity while learning shared information from other clients. Moreover, an incremental learning strategy is proposed and seamlessly embedded into the PFL framework to continuously learn new modes without forgetting in dynamic environments. Extensive experiment results using public datasets demonstrate that the proposed method exhibits competitive probabilistic prediction performance compared to several state-of-the-art solutions for distributed PVs in the presence of small-sample, heterogeneous, and dynamic data.

Suggested Citation

  • Zhang, Le & Chen, Ziyu & Zhu, Jizhong & Lin, Kaixin & Huang, Linying, 2025. "Online incremental probability power prediction for distributed PVs in heterogeneous and dynamic data environments," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008402
    DOI: 10.1016/j.apenergy.2025.126110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Keda & Chen, Zhaohua & Lai, Chun Sing & Xie, Changhong & Wang, Dongxiao & Li, Xuecong & Zhao, Zhuoli & Tong, Ning & Lai, Loi Lei, 2022. "An unsupervised data-driven approach for behind-the-meter photovoltaic power generation disaggregation," Applied Energy, Elsevier, vol. 309(C).
    2. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    3. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    4. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    5. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    6. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    8. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    9. Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2024. "A privacy-preserving framework integrating federated learning and transfer learning for wind power forecasting," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    2. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    3. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    4. Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
    5. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    6. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    7. Qu, Ziyu & Ge, Xinxin & Lu, Jinling & Wang, Fei, 2025. "Unsupervised disaggregation of aggregated net load considering behind-the-meter PV based on virtual PV sample construction," Applied Energy, Elsevier, vol. 381(C).
    8. Wang, Xiaorong & Zhou, Yangze, 2025. "Privacy-preserving probabilistic wind power forecasting: An adaptive federated approach," Applied Energy, Elsevier, vol. 396(C).
    9. Gao, Yuan & Zhao, Yucan & Hu, Sile & Tahir, Mustafa & Yuan, Wang & Yang, Jiaqiang, 2025. "A three-stage adjustable robust optimization framework for energy base leveraging transfer learning," Energy, Elsevier, vol. 319(C).
    10. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    11. Liu, Linbin & Li, June & Wang, Juan, 2025. "CFL-ICCV: Clustered federated learning framework with an intra-cluster cross-validation mechanism for DER forecasting," Applied Energy, Elsevier, vol. 377(PD).
    12. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    14. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    15. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    16. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    17. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    18. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    19. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    20. Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.