IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925007937.html

Uncertain electric vehicle charging flexibility, its value on spot markets, and the impact of user behaviour

Author

Listed:
  • Chemudupaty, Raviteja
  • Bahmani, Ramin
  • Fridgen, Gilbert
  • Marxen, Hanna
  • Pavić, Ivan

Abstract

Simultaneous charging of electric vehicles (EVs) increases peak demand, potentially causing higher electricity prices and increased procurement costs for charging, making EVs less economically appealing. Smart charging addresses this challenge by utilising EVs as flexible assets, adjusting their charging behaviour in response to both power system conditions and user requirements. In our paper, we take the perspective of an energy provider using smart charging algorithms to reduce their electricity procurement costs (EPC) by charging the EVs when the electricity prices are lower. However, EV usage uncertainties introduce variability in the flexibility EVs provide and subsequently impact the energy providers’ EPC when trading in electricity markets. Our paper considers uncertainties arising due to variable driving patterns and charging preferences. Within the charging preferences, we specifically focus on two charging preferences such as a minimum state of charge (SOCmin) requirement – the percentage of the battery up to which EV needs to be charged immediately at full power when connected to the charging point; and the frequency of EV connection to the charging point – how often EV users connect their EV to the charging point. We develop a flexibility model that quantifies the flexibility in terms of energy and power as a function of time. To calculate the energy provider’s EPC, we develop a scenario-based robust optimisation model, minimising the energy provider’s EPC while trading in German day-ahead and intraday markets. As expected, an increase in SOCmin requirements and a decrease in frequency of EV connections results in reduced EV flexibility and subsequently increases the EPC. However, our cost sensitivity analysis reveals that even with an 80 % SOCmin, EPC can be reduced by up to 33.5 % and 36.9 % for the years 2022 and 2023, respectively, compared to fully uncontrolled charging. When EVs offer full flexibility (0 % SOCmin), the cost reduction is only slightly higher, at around 43.6 % and 49.6 % for the years 2022 and 2023, respectively. Flexible EV charging, even with low flexibility, thus possesses high economic value, allowing energy providers to achieve substantial monetary gains with minimal impact on user convenience.

Suggested Citation

  • Chemudupaty, Raviteja & Bahmani, Ramin & Fridgen, Gilbert & Marxen, Hanna & Pavić, Ivan, 2025. "Uncertain electric vehicle charging flexibility, its value on spot markets, and the impact of user behaviour," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925007937
    DOI: 10.1016/j.apenergy.2025.126063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Funke, Simon Árpád & Plötz, Patrick & Wietschel, Martin, 2019. "Invest in fast-charging infrastructure or in longer battery ranges? A cost-efficiency comparison for Germany," Applied Energy, Elsevier, vol. 235(C), pages 888-899.
    2. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    3. Mario Herberz & Ulf J. J. Hahnel & Tobias Brosch, 2022. "Counteracting electric vehicle range concern with a scalable behavioural intervention," Nature Energy, Nature, vol. 7(6), pages 503-510, June.
    4. Amela Ajanovic & Reinhard Haas, 2018. "Electric vehicles: solution or new problem?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 7-22, December.
    5. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    6. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    7. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    8. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    9. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2022. "Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers," Applied Energy, Elsevier, vol. 319(C).
    10. Xu Andy Sun & Antonio J. Conejo, 2021. "Robust Optimization in Electric Energy Systems," International Series in Operations Research and Management Science, Springer, number 978-3-030-85128-6, December.
    11. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    12. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).
    13. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    14. Gaete-Morales, Carlos & Kramer, Hendrik & Schill, Wolf-Peter, 2021. "An open tool for creating battery-electric vehicle time series from empirical data, emobpy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8.
    15. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    17. Soumia Ayyadi & Mohamed Maaroufi, 2020. "Optimal Framework to Maximize the Workplace Charging Station Owner Profit while Compensating Electric Vehicles Users," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, May.
    18. Niklas Wulff & Fabia Miorelli & Hans Christian Gils & Patrick Jochem, 2021. "Vehicle Energy Consumption in Python (VencoPy): Presenting and Demonstrating an Open-Source Tool to Calculate Electric Vehicle Charging Flexibility," Energies, MDPI, vol. 14(14), pages 1-23, July.
    19. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    20. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Clearing the Day-Ahead Market with a High Penetration of Stochastic Production," International Series in Operations Research & Management Science, in: Integrating Renewables in Electricity Markets, edition 127, chapter 3, pages 57-100, Springer.
    21. Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
    22. Wu, Jiechen & Hu, Junjie & Ai, Xin & Zhang, Zhan & Hu, Huanyu, 2019. "Multi-time scale energy management of electric vehicle model-based prosumers by using virtual battery model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    23. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    24. Mandev, Ahmet & Plötz, Patrick & Sprei, Frances & Tal, Gil, 2022. "Empirical charging behavior of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    25. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chemudupaty, Raviteja & Hornek, Timothée & Pavić, Ivan & Potenciano Menci, Sergio, 2025. "Optimizing trading of electric vehicle charging flexibility in the continuous intraday market under user and market uncertainties," Applied Energy, Elsevier, vol. 381(C).
    2. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    3. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    4. Shariatzadeh, Mahla & Lopes, Marta A.R. & Henggeler Antunes, Carlos, 2025. "Electric vehicle users' charging behavior: A review of influential factors, methods and modeling approaches," Applied Energy, Elsevier, vol. 396(C).
    5. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    6. Yamaguchi, Yohei & Ochi, Yudai & Ohara, Ryotaro & Uchida, Hideaki & Yoshizawa, Shinya & Sakai, Katsuya & Ota, Yutaka & Shimoda, Yoshiyuki, 2025. "Large-scale spatiotemporal modeling of travel behavior, electric vehicle charging demand, and flexibility based on human mobility big data," Energy, Elsevier, vol. 335(C).
    7. Fu, Zhi & Liu, Xiaochen & Zhang, Ji & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2025. "Orderly solar charging of electric vehicles and its impact on charging behavior: A year-round field experiment," Applied Energy, Elsevier, vol. 381(C).
    8. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    9. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    10. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    11. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    12. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    13. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    14. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    15. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    16. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    17. Sonia Martin & Siobhan Powell & Ram Rajagopal, 2025. "Cascading marginal emissions signals for green charging with growing electric vehicle adoption," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    19. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    20. Dillman, Kevin Joseph & Fazeli, Reza & Shafiei, Ehsan & Jónsson, Jón Örvar G. & Haraldsson, Hákon Valur & Davíðsdóttir, Brynhildur, 2021. "Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik's electrical system at the city and distribution system level," Utilities Policy, Elsevier, vol. 68(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925007937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.